400
Views
21
CrossRef citations to date
0
Altmetric
Articles

Predicted performance of hot mix asphalt modified with nano-montmorillonite and nano-silicon dioxide based on Egyptian conditions

, , , &
Pages 642-652 | Received 24 Mar 2018, Accepted 14 Jul 2018, Published online: 25 Jul 2018

References

  • Amin, I., et al., 2015. Evaluation of polymer modified asphalt mixtures in pavement construction. In: 8th international engineering conference, 17–22 Novemeber, Faculty of Engineering, Mansoura University, Mansoura. Sharm Al-Shiekh, Egypt.
  • Amin, I., et al., 2016a. Effect of functionalization and mixing process on the rheological properties of asphalt modified with carbon nanotubes. American Journal of Civil Engineering and Architecture, 4 (3), 90–97.
  • Amin, I., et al., 2016b. Laboratory evaluation of asphalt binder modified with carbon nanotubes for Egyptian climate. Construction and Building Materials, 121, 361–372. doi: 10.1016/j.conbuildmat.2016.05.168
  • Amirkhanian, A. N., Xiao, F., and Amirkhanian, S. N, 2011. Characterization of unaged asphalt binder modified with carbon nano particles. International Journal of Pavement Research and Technology, 4 (5), 281–286.
  • Arabani, M., Haghi, A., and Tanzadeh, R, 2012. Laboratory study on the effect of nano-sio2 on improvement fatigue performance of aged asphalt pavement. ed. 4th international conference on nanostructures, 12–14 March 2012, Kish Island, IR Iran.
  • ARA Inc., 2004. ERES Consultants Division, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP 1-37A Final Report. Washington, DC: Transportation Research Board, National Research Council.
  • Ashish, P. K. and Singh, D., 2018. Development of empirical model for predicting G∗/sinδ and viscosity value for nanoclay and carbon nano tube modified asphalt binder. Construction and Building Materials, 165, 363–371. doi: 10.1016/j.conbuildmat.2018.01.021
  • Ashish, P. K., Singh, D., and Bohm, S., 2017. Investigation on influence of nanoclay addition on rheological performance of asphalt binder. Road Materials and Pavement Design, 18 (5), 1007–1026. doi: 10.1080/14680629.2016.1201522
  • ASTM D2872-12e1, 2012. Standard test method for effect of heat and Air on a moving film of asphalt (rolling thin-film oven test). West Conshohocken, PA: ASTM International.
  • ASTM D4402/D4402M-15, 2015. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. West Conshohocken, PA: ASTM International.
  • Bari, J. and Witczak, M., 2006. Development of a new revised version of the Witczak E* predictive model for hot mix asphalt mixtures (with discussion). Journal of the Association of Asphalt Paving Technologists, 75, 381–423.
  • Buddhavarapu, P., et al., 2015. Performance related specifications development of hot mix and concrete pavement projects using field data. In: J. Harvey and K. F. Chou, eds. Airfield and highway pavements 2015: innovative and cost-effective pavements for a sustainable future.
  • Chen, G., et al., 2012. Concrete surface with nano-particle additives for improved wearing resistance to increasing truck traffic. 25-1121-0001-441.
  • de Melo, J. V. S., and Trichês, G., 2017. Evaluation of properties and fatigue life estimation of asphalt mixture modified by organophilic nanoclay. Construction and Building Materials, 140, 364–373. doi: 10.1016/j.conbuildmat.2017.02.143
  • El-Badawy, S. M., Khattab, A. M., and Al Hazmi, A. A., 2016. Using artificial neural networks (ANNs) for Hot Mix asphalt E* predictions. 4th Geo-China International Conference, 25–27 July, Shandong, China.
  • El-Badawy, S., Abd El-Hakim, R., and Awed, A., 2018. Comparing artificial neural networks with regression models for Hot-Mix asphalt dynamic modulus prediction. Journal of Materials in Civil Engineering, 30 (7), 04018128. doi: 10.1061/(ASCE)MT.1943-5533.0002282
  • El-Badawy, S., Bayomy, F., and Awed, A., 2012. Performance of MEPDG dynamic modulus predictive models for asphalt concrete mixtures: local calibration for idaho. Journal of Materials in Civil Engineering, 24 (11), 1412–1421. doi: 10.1061/(ASCE)MT.1943-5533.0000518
  • El-Badawy, S., and El-Hakim, R. A., 2017. Application of artificial neural networks for Hot Mix asphalt dynamic modulus (E*) prediction. In: L. Mohammad, ed. Advancement in the design and performance of sustainable asphalt pavements. GeoMEast 2017. Sustainable Civil Infrastructures. Springer.
  • El-Badawy, S., Jeong, M., and El-Basyouny, M., 2009. Methodology to predict alligator fatigue cracking distress based on asphalt concrete dynamic modulus. Transportation Research Record: Journal of the Transportation Research Board, 2095, 115–124. doi: 10.3141/2095-12
  • El-Badawy, S. M., Khattab, A. M., and Al Hazmi, A. A., 2016. Using artificial neural networks (ANNs) for Hot Mix asphalt E* predictions. Geo-China 2016, 83–91. doi: 10.1061/9780784480076.010
  • Elshaeb, M. A., El-Badawy, S. M., and Shawaly, E.-S. A., 2014. Development and impact of the Egyptian climatic conditions on flexible pavement performance. American Journal of Civil Engineering and Architecture, 2 (3), 115–121. doi: 10.12691/ajcea-2-3-4
  • El-Shafie, M., Ibrahim, I., and El Rahman, A. A., 2012. The addition effects of macro and nano clay on the performance of asphalt binder. Egyptian Journal of Petroleum, 21 (2), 149–154. doi: 10.1016/j.ejpe.2012.11.008
  • Ezzat, H., et al., 2016a. Evaluation of asphalt enhanced with locally made nanomaterials. Nanotechnologies in Construction: A Scientific Internet-Journal, 8 (4), 42–67.
  • Ezzat, H., et al., 2016b. Evaluation of asphalt binders modified with nanoclay and nanosilica. Procedia Engineering, 143, 1260–1267. doi: 10.1016/j.proeng.2016.06.119
  • Fu, Y., et al., 2010. Research on the rheological characteristics of layered nano-montmorillonite modified asphalt binder. ed. 2010 international conference on mechanic automation and control engineering (MACE), 1382–1384.
  • Goh, S. W., et al., 2011. Effect of deicing solutions on the tensile strength of micro-or nano-modified asphalt mixture. Construction and Building Materials, 25 (1), 195–200. doi: 10.1016/j.conbuildmat.2010.06.038
  • Han, J., et al., 2010. Evaluation of layered inorganic nano-powder modified bitumen. Wuhan Ligong Daxue Xuebao(Journal of Wuhan University of Technology), 32 (17), 51–54.
  • Hassan, M., et al., 2011. Evaluation of nano-titanium dioxide additive on asphalt binder aging properties. Transportation Research Record: Journal of the Transportation Research Board, 2207, 11–15. doi: 10.3141/2207-02
  • Highway, A. A. o. S., and Officials, T., 1993. AASHTO Guide for Design of Pavement Structures, 1993. AASHTO.
  • Jahromi, S. G., et al., 2011. Rutting and fatigue behavior of nanoclay modified bitumen. Research Note. IJST, Transaction of Civil Engineering, 35 (C2), 277–281.
  • Jahromi, S. G., et al., 2012. Effects of nanoclay on rutting and fatigue resistance of bitumen binder. International Journal of Materials Research, 103 (3), 383–389. doi: 10.3139/146.110588
  • Jahromi, S. G., Andalibizade, B., and Vossough, S., 2010. Engineering properties of nanoclay modified asphalt concrete mixtures. The Arabian Journal for Science and Engineering, 35 (1 B), 89–103.
  • Jahromi, S. G., and Khodaii, A., 2009. Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, 23 (8), 2894–2904. doi: 10.1016/j.conbuildmat.2009.02.027
  • Jenks, C. W., et al., 2011. A performance-related specification for hot-mixed asphalt. Washington, DC: Transportation Research Board.
  • Jeong, M., and El-Basyouny, M., 2010. Statistical applications and stochastic analysis for performance-related specification of asphalt quality assurance. Transportation Research Record: Journal of the Transportation Research Board, 2151, 84–92. doi: 10.3141/2151-11
  • Khattab, A. M., El-Badawy, S. M., and Elmwafi, M., 2014. Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-pavement ME design in the kingdom of Saudi Arabia. Construction and Building Materials, 64, 360–369. doi: 10.1016/j.conbuildmat.2014.04.066
  • Khattab, A. M., El-Badawy, S. M., and Elmwafi, M., 2017. Comparison of Witczak NCHRP 1-40D & Hirsh dynamic modulus models based on different binder characterization methods: a case study. ed. MATEC Web of Conferences, 2017, 07003.
  • Khodary, F., Mohammed, Y., and Wazeri, A., 2015. Damage analysis of asphalt concrete mixtures modified with crumb rubber/CaCo3 nanocomposite. International Journal of Scientific & Engineering Research, 6 (3), 307–312.
  • Mahdi, L. M., et al., 2013. Effect of short term aging on organic montmorillonite nanoclay modified asphalt. Indian Journal of Science and Technology, 6 (10), 5434–5442.
  • McCarthy, L. M., et al., 2014. Comparing flexible pavement performance using emerging analysis tools. Journal of Transportation Engineering, 140 (5), 04014013. doi: 10.1061/(ASCE)TE.1943-5436.0000665
  • McDaniel, R. S., and Levenberg, E, 2013. Risk management of low air void asphalt concrete mixtures.
  • Mensching, D. J., et al., 2013. Modeling flexible pavement overlay performance for use with quality-related specifications. Construction and Building Materials, 48, 1072–1080. doi: 10.1016/j.conbuildmat.2013.07.058
  • Mojtaba, G., et al., 2012. Modification of stone matrix asphalt with nano-SiO2. J Basic Appl Sci Res, 2 (2), 1338–1344.
  • Moulthrop, J. and Witczak, M., 2011. NCHRP report 704: a performance-related specification for hot-mixed asphalt. Washington, DC: Transportation Research Board.
  • Muniandy, R., Hasham, S., and Aburkaba, E., 2013. Effect of organic montmorillonite nanoclay concentration on the physical and rheological properties of asphalt binder. Australian Journal of Basic and Applied Sciences, 7 (9), 429–437.
  • Nazzal, M. D., et al., 2012. Fundamental characterization of asphalt clay nanocomposites. Journal of Nanomechanics and Micromechanics, 3 (1), 1–8. doi: 10.1061/(ASCE)NM.2153-5477.0000050
  • Nurulain, C., Ramadhansyah, P., and Norhidayah, A., 2015. A review of advance nanotechnology against pavement deterioration. Advanced Materials Research, 1113, 9–12. doi: 10.4028/www.scientific.net/AMR.1113.9
  • Pamplona, T. F., et al., 2012. Asphalt binders modified by SBS and SBS/nanoclays: effect on rheological properties. Journal of the Brazilian Chemical Society, 23 (4), 639–647.
  • Polacco, G., et al., 2008. Rheological properties of asphalt/SBS/clay blends. European Polymer Journal, 44 (11), 3512–3521. doi: 10.1016/j.eurpolymj.2008.08.032
  • Ramezania, F., and Arania, A. J., 2012. Effect of nanoclay presence on high temperature rheological behavior of crumb rubber-modified Bitumen. International conference on nanostructures (ICNS4), 12–14 March 2012, Kish Island, I.R. Iran, 138–140.
  • Saltan, M., Terzi, S., and Karahancer, S., 2017. Examination of hot mix asphalt and binder performance modified with nano silica. Construction and Building Materials, 156, 976–984. doi: 10.1016/j.conbuildmat.2017.09.069
  • Saltan, M., Terzi, S., and Karahancer, S, 2018. Performance analysis of nano modified bitumen and hot mix asphalt. Construction and Building Materials, 173, 228–237. doi: 10.1016/j.conbuildmat.2018.04.014
  • Santagata, E., et al., 2012. Rheological characterization of bituminous binders modified with carbon nanotubes. Procedia-Social and Behavioral Sciences, 53, 546–555. doi: 10.1016/j.sbspro.2012.09.905
  • Sarsam, S. I., 2015. Impact of nano materials on rheological and physical properties of asphalt cement. International Journal of Advanced Materials Research, 1 (1), 8–14.
  • Shi, X., et al., 2011. Exploring the interactions of chloride deicer solutions with nanomodified and micromodified asphalt mixtures using artificial neural networks. Journal of Materials in Civil Engineering, 24 (7), 805–815. doi: 10.1061/(ASCE)MT.1943-5533.0000452
  • Steyn, W. J., et al., 2013. Evaluating the properties of bitumen stabilized with carbon nanotubes. Advanced Materials Research, 723, 312–319. doi: 10.4028/www.scientific.net/AMR.723.312
  • Su, Q., et al., 2012. Study on how to improve asphalt-modified with SBS-added carbon-nanotubes-material. Advanced Materials Research, 430–432, 217–220. doi: 10.4028/www.scientific.net/AMR.430-432.217
  • Sun, L., Guan, H., and Ge, Q., 2011a. Research on the performance of asphalt modified by SBS rubber and carbon nanotube. Applied Mechanics and Materials, 99–100, 1243–1246. doi: 10.4028/www.scientific.net/AMM.99-100.1243
  • Sun, S. S., Wang, Y. M., and Zhang, A. Q., 2011b. Study on anti-ultraviolet radiation aging property of TiO2 modified asphalt. Advanced Materials Research, 306-307, 951–955. doi: 10.4028/www.scientific.net/AMR.306-307.951
  • Taherkhani, H., Afroozi, S., and Javanmard, S, 2017. Comparative study of the effects of nanosilica and zyco-soil nanomaterials on the properties of asphalt concrete. Journal of Materials in Civil Engineering, 29 (8), 04017054. doi: 10.1061/(ASCE)MT.1943-5533.0001889
  • Tang, X. D., et al., 2011a. Preparation and aging property of nannocomposite CaCO3/SBS modified asphalts. Materials Science Forum, Switzerland, 213–216. doi: 10.4028/www.scientific.net/MSF.688.213
  • Tang, X. D., et al., 2011b. Nano-montmorillonite/SBS composite modified asphalt: preparation and aging property. Materials Science Forum, Switzerland, 688, 175–179. doi: 10.4028/www.scientific.net/MSF.688.175
  • Tang, X. D., et al., 2011c. Performance evaluation of nano-montmorillonite/SBS modified asphalt paving mixtures. ed. Materials Science Forum, Switzerland, 688, 191–194. doi: 10.4028/www.scientific.net/MSF.688.191
  • Ugwu, O. O., et al., 2012. Nanotechnology as a preventive engineering solution to highway infrastructure failures. Journal of Construction Engineering and Management, 139 (8), 987–993. doi: 10.1061/(ASCE)CO.1943-7862.0000670
  • Van de Van, M., et al., 2008. Nanotechnology for binders of asphalt mixtures. Proceedings of the 4th eurasphalt and eurobitume congress, May 2008, Copenhagen, Denmark.
  • Van de Ven, M., Molenaar, A., and Besamusca, J., 2009. Nanoclay for binder modification of asphalt mixtures. Proceedings of the 7th international RILEM symposium on advanced testing and characterization of bituminous materials, Rhodes, Greece, 133–142.
  • Vasilievici, G., et al., 2013. Asphalt nanocomposite based on calcium carbonate. Materiale Plastice, 50 (3), 220–224.
  • Vysotskaya, M., et al., 2013. Experience and prospects of nanomodification using in production of composites based on organic binders. NANOCON® 2013.
  • Vysotskaya, M., 2013. Polymer-bitumen binder with the addition of single-walled carbon nanotubes. Advanced Materials Research, 699, 530–534. doi: 10.4028/www.scientific.net/AMR.699.530
  • Wang, X. L., Liu, L. P., and Xu, H. M., 2013. Application of nano-TiO2 used in road engineering and its long-term decomposition effect. Advanced Materials Research, 662, 167–172. doi: 10.4028/www.scientific.net/AMR.662.167
  • Witczak, M., El-Basyouny, M., and El-Badawy, S., 2007. Incorporation of the new (2005) E* predictive model in the MEPDG. NCHRP 1-40D Final Report.
  • Wu, S. P., et al., 2012. Study of high temperature performance and Low temperature property on layered silicate modified asphalt concrete. ed. Key Engineering Materials, 509, 189–193. doi: 10.4028/www.scientific.net/KEM.509.189
  • Wu, S., Wang, J., and Jiesheng, L., 2010. Preparation and fatigue property of nanoclay modified asphalt binder. 2010 international conference on mechanic automation and control engineering (MACE), 26–28 June 2010, Wuhan, China, 1595–1598.
  • Yang, J. and Tighe, S., 2013. A review of advances of nanotechnology in asphalt mixtures. Procedia-Social and Behavioral Sciences, 96, 1269–1276. doi: 10.1016/j.sbspro.2013.08.144
  • Yao, H., et al., 2011. Microstructure and performance analysis of nanomaterials modified asphalt. In: GeoHunan international conference, 9–11 June, Road materials and new innovations in pavement engineering, Hunan, China.
  • Yao, H., et al., 2013. Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Construction and Building Materials, 38, 327–337. doi: 10.1016/j.conbuildmat.2012.08.004
  • Yazdani, A. and Pourjafar, S., 2012. Optimization of asphalt binder modified with PP/SBS/nanoclay nanocomposite using taguchi method. Proceedings of World Academy of Science, Engineering and Technology, Iran.
  • You, Z., et al., 2011. Nanoclay-modified asphalt materials: preparation and characterization. Construction and Building Materials, 25 (2), 1072–1078. doi: 10.1016/j.conbuildmat.2010.06.070
  • Zare-Shahabadi, A., Shokuhfar, A., and Ebrahimi-Nejad, S, 2010. Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles. Construction and Building Materials, 24 (7), 1239–1244. doi: 10.1016/j.conbuildmat.2009.12.013
  • Zhang, J. S., et al., 2009. Mechanism researches on the mutual adaptability and the dispersivity and stability of nanoparticle-modified asphalt composite. Advanced Materials Research, 79–82, 1559–1562. doi: 10.4028/www.scientific.net/AMR.79-82.1559
  • Zhang, Z. P., et al., 2014. The influence of nano-montmorillonite on high temperature performance of asphalt. ed. Advanced Materials Research, 1015, 283–286. doi: 10.4028/www.scientific.net/AMR.1015.283

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.