775
Views
31
CrossRef citations to date
0
Altmetric
Articles

Short- and long-term properties of glass fiber reinforced asphalt mixtures

, ORCID Icon &
Pages 64-76 | Received 19 Aug 2018, Accepted 28 Jan 2019, Published online: 17 Feb 2019

References

  • AASHTO, 2008. AASHTO T283-07, resistance of compacted hot mix asphalt (HMA) to mixture-induced damage. Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO R 30, 2010. Standard practice for mixture conditioning of hot mix asphalt. Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO T 315-10, 2011. Determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR). In: AASHTO standard specifications for transportation materials and methods of sampling and testing. Washington, DC: American Association of State Highway and Transportation Officials.
  • Abtahi, S.M., Sheikhzadeh, M., and Hejazi, S.M., 2010. Fiber-reinforced asphalt-concrete – a review. Construction and Building Materials, 24 (6), 871–877. doi: 10.1016/j.conbuildmat.2009.11.009
  • Airey, G.D., 2004. Fundamental binder and practical mixture evaluation of polymer modified bituminous materials. International Journal of Pavement Engineering, 5 (3), 137–151. doi: 10.1080/10298430412331314146
  • Al-Khateeb, G. and Shenoy, A., 2004. A distinctive fatigue failure criterion. Journal of Association of Asphalt Paving Technologists, 73, 585–622.
  • ASTM D4402/D4402M, 2015. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. West Conshohocken, PA: ASTM International.
  • ASTM D6926, 2016. Standard practice for preparation of asphalt mixture specimens using Marshall apparatus. West Conshohocken, PA: ASTM International.
  • ASTM D6931, 2017. Standard test method for indirect tensile (IDT) strength of asphalt mixtures. West Conshohocken, PA: ASTM International.
  • Azari, H. and Mohseni, A., 2013. Effect of short-term conditioning and long-term ageing on permanent deformation characteristics of asphalt mixtures. Road Materials and Pavement Design, 14 (sup2), 79–91. doi: 10.1080/14680629.2013.812833
  • Babadopulos, L.F.d.A.L., Ferreira, J.L.S., and Soares, J.B., 2016. An approach to couple aging to stiffness and permanent deformation modeling of asphalt mixtures. Materials and Structures, 49 (12), 4929–4945. doi: 10.1617/s11527-016-0834-4
  • Brown, S.F., Thom, N.H., and Sanders, P.J., 2001. A study of grid reinforced asphalt to combat reflection cracking. Journal of the Association of Asphalt Paving Technologists, 70, 543–571.
  • Chen, H., et al., 2009. Evaluation and design of fiber-reinforced asphalt mixtures. Materials & Design, 30 (7), 2595–2603. doi: 10.1016/j.matdes.2008.09.030
  • Chen, J.-S. and Huang, L.-S., 2000. Developing an aging model to evaluate engineering properties of asphalt paving binders. Materials and Structures, 33 (9), 559–565. doi: 10.1007/BF02480536
  • Das, P.K., et al., 2015. On the oxidative ageing mechanism and its effect on asphalt mixtures morphology. Materials and Structures, 48 (10), 3113–3127. doi: 10.1617/s11527-014-0385-5
  • Diab, A., et al., 2016. A conditioning method to evaluate moisture influence on the durability of asphalt mixture materials. Canadian Journal of Civil Engineering, 43 (11), 943–948. doi: 10.1139/cjce-2016-0153
  • Diab, A., 2016. Studying viscosity of asphalt binders and effect of varied production temperatures on engineering properties of hot mix asphalt mixtures. Canadian Journal of Civil Engineering, 44 (999), 1–9.
  • Diab, A. and You, Z., 2017. Small and large strain rheological characterizations of polymer- and crumb rubber-modified asphalt binders. Construction and Building Materials, 144, 168–177. doi: 10.1016/j.conbuildmat.2017.03.175
  • Digimat is commercial software developed by Xstream Engineering. Company’s website: www.e-xtream.com.
  • Efa, A.K., et al., 2002. Some causes and methods of elimination of aging of asphalt concrete. Chemistry and Technology of Fuels and Oils, 38 (4), 217–222. doi: 10.1023/A:1020232415437
  • Elwardany, M.D., et al., 2017. Evaluation of asphalt mixture laboratory long-term ageing methods for performance testing and prediction. Road Materials and Pavement Design, 18 (sup1), 28–61. doi: 10.1080/14680629.2016.1266740
  • Fakhri, M. and Hosseini, S.A., 2017. Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion. Construction and Building Materials, 134, 626–640. doi: 10.1016/j.conbuildmat.2016.12.168
  • Gao, Y., et al., 2015. Interface effects on the creep characteristics of asphalt concrete. Construction and Building Materials, 96, 591–598. doi: 10.1016/j.conbuildmat.2015.08.075
  • Giavarini, C., et al., 1996. Production of stable polypropylene-modified bitumens. Fuel, 75 (6), 681–686. doi: 10.1016/0016-2361(95)00312-6
  • Guo, Q., et al., 2015. Laboratory evaluation on performance of diatomite and glass fiber compound modified asphalt mixture. Materials & Design (1980–2015), 66 (Part A), 51–59. doi: 10.1016/j.matdes.2014.10.033
  • Ho, C.-H., et al., 2016. Performance of fiber-reinforced polymer-modified asphalt. Transportation Research Record: Journal of the Transportation Research Board, 2575, 138–149. doi: 10.3141/2575-15
  • Katsuki, D. and Gutierrez, M., 2011. Viscoelastic damage model for asphalt concrete. Acta Geotechnica, 6 (4), 231–241. doi: 10.1007/s11440-011-0149-0
  • Kennedy, T.W. and Anagnos, J.N., 1983. Procedures for the static and repeated load lndirect tensile tests. Austin, TX: The University of Texas at Austin, Center for Transportation Research.
  • Khalid, H.A., 2000. A comparison between bending and diametral fatigue tests for bituminous materials. Materials and Structures, 33 (7), 457–465. doi: 10.1007/BF02480666
  • Kim, N., 1999. Multi-laboratory validation study on resilient modulus of asphalt concrete using SHRP LG Device. KSCE Journal of Civil Engineering, 3 (1), 47–55. doi: 10.1007/BF02830735
  • Kumar, P., Mehndiratta, H., and Immadi, S., 2009. Investigation of fiber-modified bituminous mixes. Transportation Research Record: Journal of the Transportation Research Board, 2126, 91–99. doi: 10.3141/2126-11
  • Laukkanen, O.-V., et al., 2015. Creep-recovery behavior of bituminous binders and its relation to asphalt mixture rutting. Materials and Structures, 48 (12), 4039–4053. doi: 10.1617/s11527-014-0464-7
  • Little, D.N., Allen, D.H., and Bhasin, A., 2018. Failure mechanisms and methods to estimate material resistance to failure. modeling and design of flexible pavements and materials. Cham: Springer International Publishing. 283–338.
  • Muftah, A., et al., 2017. Fiber-reinforced hot-Mix asphalt. Transportation Research Record: Journal of the Transportation Research Board, 2633, 98–107. doi: 10.3141/2633-12
  • Obaidat, M.T. and Al-kheder, S.A., 2006. Integration of geographic information systems and computer vision systems for pavement distress classification. Construction and Building Materials, 20 (9), 657–672. doi: 10.1016/j.conbuildmat.2005.02.009
  • Read, J.M. and Collop, A.C., 1997. Practical fatigue characterisation of bituminous paving mixtures. Journal of the Association of Asphalt Paving Technology, 65, 74–108.
  • Safavizadeh, S.A. and Kim, Y.R., 2016. Fatigue and fracture characterization of fiberglass grid-reinforced beam specimens using four-point bending notched beam fatigue test and digital image correlation technique. Materials and Structures, 50 (2), 110. doi: 10.1617/s11527-016-0980-8
  • Shafabakhsh, G. and Tanakizadeh, A., 2016. Evaluation of resilient behavior of flexible pavement asphalt layers. Materials and Structures, 49 (7), 2829–2840. doi: 10.1617/s11527-015-0689-0
  • Shakhnazarli, R.Z., et al., 2009. Polymer-bitumen compounds with crumb rubber, secondary polyethylene, and polyamide fiber waste. Russian Journal of Applied Chemistry, 82 (7), 1310–1313. doi: 10.1134/S1070427209070283
  • Shanbara, H.K., Ruddock, F., and Atherton, W., 2018a. A laboratory study of high-performance cold mix asphalt mixtures reinforced with natural and synthetic fibres. Construction and Building Materials, 172, 166–175. doi: 10.1016/j.conbuildmat.2018.03.252
  • Shanbara, H.K., Ruddock, F., and Atherton, W., 2018b. Predicting the rutting behaviour of natural fibre-reinforced cold mix asphalt using the finite element method. Construction and Building Materials, 167, 907–917. doi: 10.1016/j.conbuildmat.2018.02.072
  • Shen, S. and Carpenter, S., 2007. Development of an asphalt fatigue model based on energy principles. Journal of the Association of Asphalt Paving Technologists, 76, 525–573.
  • Sheng, Y., et al., 2017. Effect of fibers on mixture design of Stone matrix asphalt. Applied Sciences, 7 (3), 297. doi: 10.3390/app7030297
  • Stempihar, J., Souliman, M., and Kaloush, K., 2012. Fiber-reinforced asphalt concrete as sustainable paving material for airfields. Transportation Research Record: Journal of the Transportation Research Board, 2266, 60–68. doi: 10.3141/2266-07
  • Tabaković, A. and Schlangen, E., 2016. Self-healing technology for asphalt pavements. In: M.D. Hager, S. van der Zwaag, and U.S. Schubert. Self-healing materials. Cham: Springer International Publishing, 285–306.
  • Tangella, S., et al., 1990. Summary report on fatigue response of asphalt mixtures. SHRP-A-369 Report. Washington, DC: Strategic Highway Research Program, National Research Council.
  • Tayebali, A.A., Rowe, G.M., and Sousa, J.B., 1992. Fatigue response of asphalt-aggregate mixtures. Journal of the Association of Asphalt Paving Technologists, 61, 333–360.
  • Venudharan, V. and Biligiri, K.P., 2015. Estimation of phase angles of asphalt mixtures using resilient modulus test. Construction and Building Materials, 82, 274–286. doi: 10.1016/j.conbuildmat.2015.02.061
  • Wekumbura, C., Stastna, J., and Zanzotto, L., 2005. Stress growth coefficient in polymer modified asphalt. Materials and Structures, 38 (8), 755–760. doi: 10.1007/BF02479288
  • Wu, J., Yang, X., and Bai, F., 2014. A micromechanical framework with aggregate-mastic interface effect for predicting uniaxial compression creep of asphalt mixture. Acta Mechanica Solida Sinica, 27 (3), 306–314. doi: 10.1016/S0894-9166(14)60039-2
  • Wu, S., et al., 2017. Evaluation of long-term performance of stone matrix asphalt in Washington State. Journal of Performance of Constructed Facilities, 31 (1), 04016074. doi: 10.1061/(ASCE)CF.1943-5509.0000939
  • Yang, X., et al., 2017. Environmental and mechanical performance of crumb rubber modified warm mix asphalt using Evotherm. Journal of Cleaner Production, 159, 346–358. doi: 10.1016/j.jclepro.2017.04.168
  • Yin, F., et al., 2017. Long-term ageing of asphalt mixtures. Road Materials and Pavement Design, 8 (Suppl 1), 2–27. doi: 10.1080/14680629.2016.1266739
  • Yin, F., et al., 2018. Refining the indirect tensile (IDT) Nflex factor test to evaluate cracking resistance of asphalt mixtures for mix design and quality assurance. Construction and Building Materials, 172, 396–405. doi: 10.1016/j.conbuildmat.2018.03.251
  • Zahran, S.Z. and Fatani, M.N., 1999. Glass fiber reinforced asphalt paving mixture: feasibility assessment. Journal of King Abdulaziz University-Engineering Sciences, 11 (1), 85–98. doi: 10.4197/Eng.11-1.6
  • Zhang, J., et al., 2018. Experimental evaluation of crumb rubber and polyethylene integrated modified asphalt mixture upon related properties. Road Materials and Pavement Design, 1–16.
  • Zhu, J., Birgisson, B., and Kringos, N., 2014. Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18–38. doi: 10.1016/j.eurpolymj.2014.02.005
  • Zofka, A., Maliszewski, M., and Maliszewska, D., 2017. Glass and carbon geogrid reinforcement of asphalt mixtures. Road Materials and Pavement Design, 18 (sup1), 471–490. doi: 10.1080/14680629.2016.1266775

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.