870
Views
21
CrossRef citations to date
0
Altmetric
Articles

Neural networks for fatigue cracking prediction using outputs from pavement mechanistic-empirical design

, , ORCID Icon &
Pages 162-172 | Received 24 Oct 2018, Accepted 04 Feb 2019, Published online: 17 Feb 2019

References

  • AASHTO, 2010. Guide for the local calibration of the mechanistic-empirical pavement design guide. Washington, DC 20001: American Association of State Highway and Transportation Officials.
  • AASHTO, 2015. Mechanistic-empirical pavement design guide-a manual of practice. 2nd ed. Washington, DC 20001: American Association of State Highway and Transportation Officials.
  • Abadi, M., et al., 2016. Tensorflow: a system for large-scale machine learning. In: OSDI. vol. 16, 265–283.
  • ARA, 2004b. Guide for mechanistic-empirical design guide of new and rehabilitated pavement structures: Calibration of fatigue cracking models for flexible pavements. Transporation Research Board of the National Academies, Washington D.C., Final Report Appendix EE-1: NCHRP 1-37A.
  • ARA, 2004a. Guide for mechanistic-empirical design guide of new and rehabilitated pavement structures. Transporation Research Board of the National Academies, Washington D.C., Final Report NCHRP 1-37A.
  • ARA, 2004c. Input data for the calibration and validation of the design guide for new constructed flexible pavement sections. Transporation Research Board of the National Academies, Washington D.C., Final Report Appendix EE-1: NCHRP 1-37A.
  • Banan, M.R., and Hjelmstad, K.D., 1996. Neural networks and AASHO road test. Journal of Transportation Engineering, 122 (5), 358–366. doi: 10.1061/(ASCE)0733-947X(1996)122:5(358)
  • Choi, J.H., Adams, T.M., and Bahia, H.U., 2004. Pavement roughness modeling using back-propagation neural networks. Computer-Aided Civil and Infrastructure Engineering, 19 (4), 295–303. doi: 10.1111/j.1467-8667.2004.00356.x
  • Clevert, D.A., Unterthiner, T., and Hochreiter, S., 2015. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.
  • Commuri, S., and Zaman, M., 2008. A novel neural network-based asphalt compaction analyzer. International Journal of Pavement Engineering, 9 (3), 177–188. doi: 10.1080/10298430701232018
  • Darter, M.I., et al., 2006. Changes to the “Mechanistic-Empirical Pavement Design Guide” software through version 0.900. NCHRP Research Results Digest, (308).
  • Darter, M.I., et al., 2014. Calibration and implementation of the AASHTO mechanistic-empirical pavement design guide in arizona.
  • El-Basyouny, M., and Witczak, M., 2005. Part 2: flexible pavements: calibration of alligator fatigue cracking model for 2002 design guide. Transportation Research Record: Journal of the Transportation Research Board, 1919, 76–86. doi: 10.1177/0361198105191900109
  • Friedman, J., Hastie, T., and Tibshirani, R., 2009. The elements of statistical learning. 2nd ed. Springer Series in Statistics. New York, Springer.
  • Fwa, T.F., and Chan, W.T., 1993. Priority rating of highway maintenance needs by neural networks. Journal of Transportation Engineering, 119 (3), 419–432. doi: 10.1061/(ASCE)0733-947X(1993)119:3(419)
  • Glorot, X. and Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, Sardinia, Italy. 249–256.
  • Gong, H., et al., 2017. Local calibration of the fatigue cracking models in the mechanistic-empirical pavement design guide for Tennessee. Road Materials and Pavement Design, 18, 130–138. doi: 10.1080/14680629.2017.1329868
  • Gong, H., et al., 2018. Improving accuracy of rutting prediction for mechanistic-empirical pavement design guide with deep neural networks. Construction and Building Materials, 190, 710–718. doi: 10.1016/j.conbuildmat.2018.09.087
  • Goodfellow, I., Bengio, Y., and Courville, A., 2016. Deep learning. Cambridge, Massachusetts: MIT press.
  • Hall, K., Xiao, D., and Wang, K., 2011. Calibration of the mechanistic-empirical pavement design guide for flexible pavement design in Arkansas. Transportation Research Record: Journal of the Transportation Research Board, 2226, 135–141. doi: 10.3141/2226-15
  • Hallin, J.P, et al., 2004. Development of the 2002 guide for the design of new and rehabilitated pavement structures: phase II. Report for National Cooperative Highway Research Program, Transportation Research Board, National Research Council.
  • Hoerl, A.E., and Kennard, R.W., 1970. Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12 (1), 55–67. doi: 10.1080/00401706.1970.10488634
  • Jadoun, F., and Kim, Y., 2012. Calibrating mechanistic-empirical pavement design guide for North Carolina: genetic algorithm and generalised reduced gradient optimization methods. Transportation Research Record: Journal of the Transportation Research Board, 2305, 131–140. doi: 10.3141/2305-14
  • Kaseko, M.S., and Ritchie, S.G., 1993. A neural network-based methodology for pavement crack detection and classification. Transportation Research Part C: Emerging Technologies, 1 (4), 275–291. doi: 10.1016/0968-090X(93)90002-W
  • Khazanovich, L., 2006. Evaluation of the subgrade resilient modulus predictive model for use in the MEPDG. Proceedings in transportation research board 85th annual meeting, Washtington, D.C.
  • Kim, S., Ceylan, H., and Gopalakrishnan, K., 2007. Effect of M-E design guide inputs on flexible pavement performance predictions. Road Materials and Pavement Design, 8 (3), 375–397. doi: 10.1080/14680629.2007.9690080
  • Kingma, D.P., and Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  • Lacroix, A., Kim, Y., and Ranjithan, S., 2008. Backcalculation of dynamic modulus from resilient modulus of asphalt concrete with an artificial neural network. Transportation Research Record: Journal of the Transportation Research Board, 2057, 107–113. doi: 10.3141/2057-13
  • La Torre, F., Domenichini, L., and Darter, M.I., 1998. Roughness prediction model based on the artificial neural network approach. In: 4th International conference on managing pavements, Durban, South Africa.
  • LeCun, Y., Bengio, Y., and Hinton, G., 2015. Deep learning. Nature, 521 (7553), 436–444. doi: 10.1038/nature14539
  • Mallela, J., et al., 2013. Implementation of the AASHTO mechanistic-empirical pavement design guide for Colorado. Colorado. Dept. of Transportation. Research Branch, Final Report CDOOT-2013-4.
  • Meier, R.W., and Rix, G.J, 1994. Backcalculation of flexible pavement moduli using artificial neural networks. Transportation Research Record, 1448.
  • Muthadi, N., and Kim, Y., 2008. Local Calibration of Mechanistic-Empirical Pavement Design Guide for Flexible Pavement Design. Transportation Research Record: Journal of the Transportation Research Board, 2087 (1), 131–141. doi: 10.3141/2087-14
  • Nassiri, S., Bayat, A., and Kilburn, P., 2014. Traffic inputs for mechanistic-empirical pavement design guide using weigh-in-motion systems in Alberta. International Journal of Pavement Engineering, 15 (6), 483–494. doi: 10.1080/10298436.2013.797978
  • Nazzal, M.D., and Tatari, O., 2013. Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus. International Journal of Pavement Engineering, 14 (4), 364–373. doi: 10.1080/10298436.2012.671944
  • Owusu-Ababio, S., 1998. Effect of neural network topology on flexible pavement cracking prediction. Computer-Aided Civil and Infrastructure Engineering, 13 (5), 349–355. doi: 10.1111/0885-9507.00113
  • Ozgan, E., 2011. Artificial neural network based modelling of the marshall stability of asphalt concrete. Expert Systems with Applications, 38 (5), 6025–6030. doi: 10.1016/j.eswa.2010.11.018
  • Ozsahin, T.S., and Oruc, S., 2008. Neural network model for resilient modulus of emulsified asphalt mixtures. Construction and Building Materials, 22 (7), 1436–1445. doi: 10.1016/j.conbuildmat.2007.01.031
  • Ozturk, H.I., and Kutay, M.E., 2014. An artificial neural network model for virtual superpave asphalt mixture design. International Journal of Pavement Engineering, 15 (2), 151–162. doi: 10.1080/10298436.2013.808341
  • Sharma, S., and Das, A., 2008. Backcalculation of pavement layer moduli from falling weight deflectometer data using an artificial neural network. Canadian Journal of Civil Engineering, 35 (1), 57–66. doi: 10.1139/L07-083
  • Simpson, A.L., Daleiden, J.F., and Hadley, W.O., 1995. Rutting analysis from a different perspective. Transportation Research Record, 1473.
  • Singh, D., Zaman, M., and Commuri, S., 2012. Artificial neural network modeling for dynamic modulus of hot mix asphalt using aggregate shape properties. Journal of Materials in Civil Engineering, 25 (1), 54–62. doi: 10.1061/(ASCE)MT.1943-5533.0000548
  • Souliman, Mena I., Mamlouk, Michael S., El-Basyouny, Monhamed M., et al., 2010. Calibration of the AASHTO MEPDG for designing flexible pavements in Arizona conditions. International Journal of Pavements, 9 (1-2-3), 2–13.
  • Tapkın, S., Çevik, A., and Uşar, Ü., 2009. Accumulated strain prediction of polypropylene modified marshall specimens in repeated creep test using artificial neural networks. Expert Systems with Applications, 36 (8), 11186–11197. doi: 10.1016/j.eswa.2009.02.089
  • Tarefder, R.A., White, L., and Zaman, M., 2005. Neural network model for asphalt concrete permeability. Journal of Materials in Civil Engineering, 17 (1), 19–27. doi: 10.1061/(ASCE)0899-1561(2005)17:1(19)
  • Thompson, M., et al., 1990. Calibrated mechanistic structural analysis procedures for pavements. NCHRP 1–26.
  • Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58, 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x
  • Wang, K., et al., 2008. Database support for the new mechanistic-empirical pavement design guide. Transportation Research Record: Journal of the Transportation Research Board, 2087, 109–119. doi: 10.3141/2087-12
  • Wu, Z., Hu, S., and Zhou, F., 2014. Prediction of stress intensity factors in pavement cracking with neural networks based on semi-analytical fea. Expert Systems with Applications, 41 (4), 1021–1030. doi: 10.1016/j.eswa.2013.07.063
  • Zaghloul, S., et al., 2006. Investigations of environmental and traffic impacts on mechanistic-empirical pavement design guide predictions. Transportation Research Record: Journal of the Transportation Research Board, 1967, 148–159. doi: 10.1177/0361198106196700115
  • Zaman, M., et al., 2010. Neural network modeling of resilient modulus using routine subgrade soil properties. International Journal of Geomechanics, 10 (1), 1–12. doi: 10.1061/(ASCE)1532-3641(2010)10:1(1)
  • Zhang, A., et al., 2018. Deep learning – based fully automated pavement crack detection on 3D asphalt surfaces with an improved cracknet. Journal of Computing in Civil Engineering, 32 (5), 04018041. doi: 10.1061/(ASCE)CP.1943-5487.0000775
  • Zhou, C., et al., 2013. Seasonal resilient modulus inputs for Tennessee soils and their effects on asphalt pavement performance. In: Transportation research board 92nd annual meeting.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.