3,697
Views
100
CrossRef citations to date
0
Altmetric
Articles

Machine learning approach for pavement performance prediction

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 341-354 | Received 19 Nov 2018, Accepted 15 Apr 2019, Published online: 10 May 2019

References

  • Adeli, H., 2001. Neural networks in civil engineering: 1989–2000. Computer-Aided Civil and Infrastructure Engineering, 16 (2), 126–142. doi:10.4203/ccp.16 doi: 10.1111/0885-9507.00219
  • Ahmed, N.K., et al., 2010. An empirical comparison of machine learning models for time series forecasting. Econometric Reviews, 29 (5-6), 594–621. doi:10.1080/07474938.2010.481556.
  • Altman, N.S, 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46 (3), 175–185. doi:10.2307/2685209.
  • An, G, 1996. The effects of adding noise during backpropagation training on a generalization performance. Neural Computation, 8 (3), 643–674. doi:10.1162/neco.1996.8.3.643.
  • Balkin, S.D., and Ord, J.K, 2000. Automatic neural network modeling for univariate time series. International Journal of Forecasting, 16 (4), 509–515. doi:10.1016/s0169-2070(00)00072-8.
  • Bergstra, J., and Bengio, Y, 2012. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13 (Feb), 281–305.
  • Bianchini, A., and Bandini, P, 2010. Prediction of pavement performance through neuro-fuzzy Reasoning. Computer-Aided Civil and Infrastructure Engineering, 25 (1), 39–54. doi:10.1111/j.1467-8667.2009.00615.x.
  • Bontempi, G., Taieb, S.B., and Le Borgne, Y.A., 2012. Machine learning strategies for time series forecasting. In: European business intelligence summer school. Berlin: Springer, 62–77.
  • Bowles, M., 2015. Machine learning in Python: essential techniques for predictive analysis. Indianopolis, IN: Wiley.
  • Box, G.E.P., and Jenkins, G., 1970. Time series analysis, forecasting and control. San Francisco: Holden-Day.
  • Breiman, L, 2001. Random forests. Machine Learning, 45 (1), 5–32. doi: 10.1023/A:1010933404324
  • Caruana, R., and Niculescu-Mizil, A., 2006. An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, 161–168.
  • Ceylan, H., Bayrak, M., and Gopalakrishnan, K, 2014. Neural networks applications in pavement engineering: A recent survey. International Journal of Pavement Research and Technology, 7 (6), 434–444. doi:10.6135/ijprt.org.tw/2014.7(6).434.
  • Clements, M.P., Franses, P.H., and Swanson, N.R, 2004. Forecasting economic and financial time-series with non-linear models. International Journal of Forecasting, 20 (2), 169–183. doi:10.1016/j.ijforecast.2003.10.004.
  • Crone, S.F., Hibon, M., and Nikolopoulos, K, 2011. Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. International Journal of Forecasting, 27 (3), 635–660. doi:10.1016/j.ijforecast.2011.04.001.
  • Dalla Rosa, F., Liu, L., and Gharaibeh, N.G., 2017. IRI prediction model for use in network-level pavement management systems. Journal of Transportation Engineering, Part B: Pavements, 143 (1), 04017001. doi:10.1061/jpeodx.0000003.
  • Darrell, T., et al., 2015. Machine learning with interdependent and non-identically distributed data. Dagstuhl Reports, 5 (4). Schloss Dagstuhl.
  • De Gooijer, J.G., and Hyndman, R.J., 2006. 25 years of time series forecasting. International Journal of Forecasting, 22 (3), 443–473. doi:10.1016/j.ijforecast.2006.01.001.
  • De Oliveira, K.A., Vannucci, Á., and da Silva, E.C., 2000. Using artificial neural networks to forecast chaotic time series. Physica A: Statistical Mechanics and its Applications, 284 (1-4), 393–404. doi:10.1016/S0378-4371(00)00215-6.
  • Dietterich, T.G., 2000. Ensemble methods in machine learning. In: International workshop on multiple Classifier systems. Berlin: Springer, 1–15.
  • Durango-Cohen, P.L, 2007. A time series analysis framework for transportation infrastructure management. Transportation Research Part B: Methodological, 41 (5), 493–505. doi:10.1016/j.trb.2006.08.002.
  • Efron, B, 1979. Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7 (1), 1–26. doi:10.1007/978-0-387-75692-9_9 doi: 10.1214/aos/1176344552
  • Geman, S., Bienenstock, E., and Doursat, R, 1992. Neural networks and the bias/variance dilemma. Neural Computation, 4 (1), 1–58. doi:10.1162/neco.1992.4.1.1.
  • Goodfellow, I., Bengio, T., and Courville, A., 2016. Deep learning. Cambridge, MA: MIT Press.
  • Gulen, S., et al., 2001. Development of improved pavement performance prediction models for the Indiana pavement management system. Final Report. Indiana Department of Transportation.
  • Guo, M., Bai, Z., and An, H.Z, 1999. Multi-step prediction for nonlinear autoregressive models based on empirical distributions. Statistica Sinica, 9, 559–570.
  • Guyon, I., and Elisseeff, A, 2006. An introduction to feature extraction. In: Feature extraction. Berlin: Springer, 1-25.
  • Haas, R., Hudson, R., and Falls, L.C., 2015. Pavement asset management. Upper Saddle River, NJ: John Wiley & Sons.
  • Hair, J.F., et al., 1998. Multivariate data analysis. Upper Saddle River: Prentice Hall.
  • Harvey, A.C, 1993. Time series models. New York: Harvester Wheatsheaf.
  • Haykin, S., 1994. Neural networks: a comprehensive foundation. Upper Saddle River, NJ: Prentice Hall.
  • Hodge, V., and Austin, J, 2004. A survey of outlier detection methodologies. Artificial Intelligence Review, 22 (2), 85–126. doi:10.1023/b:aire.0000045502.10941.a9.
  • James, G., et al., 2013. An introduction to statistical learning. New York: Springer.
  • Jordan, M., and Mitchell, T, 2015. Machine learning: trends, perspectives, and prospects. Science, 349 (6245), 255–260. doi:10.1126/science.aaa8415.
  • Kane, M.J., et al., 2014. Comparison of ARIMA and random forest time series models for prediction of avian influenza H5N1 outbreaks. BMC Bioinformatics, 15 (1), 276–284. doi:10.1186/1471-2105-15-276.
  • Kargah-Ostadi, N., and Stoffels, S.M, 2015. Framework for development and comprehensive comparison of empirical pavement performance models. Journal of Transportation Engineering, 141 (8), 04015012. doi:10.1061/(asce)te.1943-5436.0000779.
  • Kargah-Ostadi, N., Stoffels, S., and Tabatabaee, N, 2010. Network-level pavement roughness prediction model for rehabilitation recommendations. Transportation Research Record: Journal of the Transportation Research Board, 2155, 124–133. doi:10.3141/2155-14.
  • Kim, K.J, 2003. Financial time series forecasting using support vector machines. Neurocomputing, 55 (1-2), 307–319. doi:10.1016/S0925-2312(03)00372-2.
  • Kotsiantis, S.B., Kanellopoulos, D., and Pintelas, P.E, 2006. Data preprocessing for supervised leaning. International Journal of Computer Science, 1 (2), 111–117.
  • Lin, J.D., Yau, J.T., and Hsiao, L.H., 2003. Correlation analysis between international roughness index (IRI) and pavement distress by neural network. In: Proceedings of the 82nd annual meeting of the transportation research board. Washington, DC: Transportation Research Board, 101–121.
  • Liu, Y., Starzyk, J.A., and Zhu, Z, 2008. Optimized approximation algorithm in neural networks without overfitting. IEEE Transactions on Neural Networks, 19 (6), 983–995. doi:10.1109/tnn.2007.915114.
  • Long-Term Pavement Performance (LTPP), 2018. LTPP DataPave online [dataset]. Available from: https://infopave.fhwa.dot.gov/ [Accessed 20 Mar 2018].
  • Marcelino, P., Antunes, M. L., and Fortunato, E, 2018. Comprehensive performance indicators for road pavement condition assessment. Structure and Infrastructure Engineering, 1–13. doi:10.1080/15732479.2018.1446179.
  • Mazari, M., and Rodriguez, D, 2016. Prediction of pavement roughness using a hybrid gene expression programming-neural network technique. Journal of Traffic and Transportation Engineering, 3 (5), 448–455. doi:10.1016/j.jtte.2016.09.007.
  • Murphy, K., 2012. Machine learning: A probabilistic perspective. Cambridge, MA: MIT Press.
  • Nassiri, S., Shafiee, M.H., and Bayat, A, 2013. Development of roughness prediction models using alberta transportation. International Journal of Pavement Research and Technology, 6 (6), 714–720.
  • Pedregosa, F., et al., 2011. Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12 (Oct), 2825–2830.
  • Perera, R.W., Byrum, C., and Kohn, S.D, 1998. Investigation of development of pavement roughness. Technical Report FHWA-RD-97-417. Federal Highway Administration.
  • Perera, R.W., and Kohn, S.D, 2001. LTPP data analysis: factors affecting pavement smoothness. NCHRP Project 20-50 (8/13). Transportation Research Board.
  • Poskitt, D.S., and Tremayne, A.R, 1986. The selection and use of linear and bilinear time series models. International Journal of Forecasting, 2 (1), 101–114. doi:10.1016/0169-2070(86)90033-6.
  • Raschka, S., 2015. Python machine learning. Birmingham: Packt Publishing.
  • Sayers, M.W. and Karamihas, S.M., 1998. The little book of profiling. Ann Arbor, MI: University of Michigan.
  • Schmitt, P., Mandel, J., and Guedj, M., 2015. A comparison of six methods for missing data imputation. Journal of Biometrics and Biostatistics, 6 (1), 224–229.
  • Smola, A.J., and Schölkopf, B, 2004. A tutorial on support vector regression. Statistics and Computing, 14 (3), 199–222. doi:10.1023/b:stco.0000035301.49549.88.
  • Srivastava, N., et al., 2014. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15 (1), 1929–1958.
  • Stekhoven, D.J., and Bühlmann, P, 2011. MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics (oxford, England), 28 (1), 112–118. doi:10.1093/bioinformatics/btr597.
  • Taieb, S.B., et al., 2012. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Systems with Applications, 39 (8), 7067–7083. doi:10.1016/j.eswa.2012.01.039.
  • Tjøstheim, D, 1986. Estimation in nonlinear time series models. Stochastic Processes and Their Applications, 21 (2), 251–273. doi:10.1016/0304-4149(86)90099-2.
  • Tong, H., 2012. Threshold models in non-linear time series analysis. New York: Springer Science & Business Media.
  • Uddin, W., Hudson, W.R., and Haas, R., 2013. Public infrastructure asset management. New York: McGraw Hill.
  • Varma, S. and Simon, R., 2006. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7 (1), 91–98. doi: 10.1186/1471-2105-7-91
  • Wan, L., et al., 2013. Regularization of neural networks using dropconnect. In: Proceedings of the 30th international conference on machine learning. Atlanta: PMLR, 1058–1066.
  • Yang, J., Lu, J.J., and Gunaratne, M, 2003. Application of neural network models for forecasting pavement crack index and pavement condition rating. Final Report. University of South Florida.
  • Ziari, H., et al., 2016a. Prediction of pavement performance: application of support vector regression with different kernels. Transportation Research Record: Journal of the Transportation Research Board, 2589, 135–145. doi:10.3141/2589-15.
  • Ziari, H., et al., 2016b. Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods. International Journal of Pavement Engineering, 17 (9), 776–788. doi:10.1080/10298436.2015.1019498.
  • Ziari, H., et al., 2016c. Analysing the accuracy of pavement performance models in the short and long terms: GMDH and ANFIS methods. Road Materials and Pavement Design, 17 (3), 619–637. doi:10.1080/14680629.2015.1108218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.