2,032
Views
9
CrossRef citations to date
0
Altmetric
Articles

Enhancement of curing properties of cold in-place recycling asphalt mixtures by induction heating

ORCID Icon, , ORCID Icon, &
Pages 355-368 | Received 04 Dec 2018, Accepted 12 Apr 2019, Published online: 20 May 2019

References

  • AENOR, Asociación Española de Normalización y Certificación, 1994. UNE 103-501-94. Geotecnia. Ensayos de compactación. Proctor modificado. Madrid: Asociación Española de Normalización y Certificación.
  • AENOR, Asociación Española de Normalización y Certificación, 2006a. UNE-EN 1097–6. Ensayos para determinar las propiedades mecánicas y físicas de los áridos. Parte 6: Determinación de la densidad de partículas y la absorción de agua. Madrid: Asociación Española de Normalización y Certificación.
  • AENOR, Asociación Española de Normalización y Certificación, 2006b. UNE-EN 1426. Betunes y ligantes bituminosos. Determinación de la penetración con aguja. Madrid: Asociación Española de Normalización y Certificación.
  • AENOR, Asociación Española de Normalización y Certificación, 2006c. UNE-EN 1427. Betunes y ligantes bituminosos. Determinación del punto de reblandecimiento. Método del anillo y bola. Madrid: Asociación Española de Normalización y Certificación.
  • AENOR, Asociación Española de Normalización y Certificación, 2007a. UNE-EN 12697–2. Métodos de ensayo para mezclas bituminosas en caliente. Parte 2: Determinación de la granulometría de las partículas. Madrid: Asociación Española de Normalización y Certificación.
  • AENOR, Asociación Española de Normalización y Certificación, 2007b. UNE-EN 12697–5. Métodos de ensayo para mezclas bituminosas en caliente. Parte 5: Determinación de la densidad máxima. Madrid: Asociación Española de Normalización y Certificación.
  • AENOR, Asociación Española de Normalización y Certificación, 2007c. UNE-EN 12697–6. Métodos de ensayo para mezclas bituminosas en caliente. Parte 6: Determinación de la densidad aparente de probetas bituminosas por el método hidrostático. Madrid: Asociación Española de Normalización y Certificación.
  • AENOR, Asociación Española de Normalización y Certificación, 2007d. UNE-EN 12697–8. Métodos de ensayo para mezclas bituminosas en caliente. Parte 8: Determinación del contenido de huecos en las probetas bituminosas. Madrid: Asociación Española de Normalización y Certificación.
  • Ajam, H., et al., 2017. Self-healing of dense asphalt concrete by two different approaches: electromagnetic induction and infrared radiation. Journal of Testing and Evaluation, 45 (6), 1993–1940. doi:10.1520/JTE20160612.
  • Al-Hdabi, A., et al., 2014b. Laboratory studies to investigate the properties of novel cold-rolled asphalt containing cement and waste bottom ash. Road Materials and Pavement Design, 15 (1), 78–89. doi:10.1080/14680629.2013.852612.
  • Al-Hdabi, A., Al Nageim, H., and Seton, L., 2014a. Performance of gap graded cold asphalt containing cement treated filler. Construction and Building Materials, 69, 362–369. doi:10.1016/j.conbuildmat.2014.07.081.
  • Asphalt Institute, 1983. Asphalt cold-mix recycling. Manual series n° 21, Lexington, Kentucky.
  • Asphalt Institute, 1989. Asphalt cold mix. Manual Series n° 14, Lexington, Kentucky.
  • Asphalt Recycling and Reclamation Association, 2003. Guidelines for cold in-place recycling. Annapolis, MD: Asphalt Recycling and Reclamation Association.
  • Association Française de Normalisation. Norme Française, 2004. NFP 98-251-1. Enrobés hydrocarbonés. Essais statiques sur mélanges hydrocarbonés, partie1: Essais Duriez sur mélanges hydrocarbonés à chaud. Paris: Association Française de Normalisation.
  • Babagoli, R., Ameli, A., and Shahriari, H, 2016. Laboratory evaluation of rutting performance of cold recycling asphalt mixtures containing SBS modified emulsion. Petroleum Science and Technology, 34 (4), 399–313. doi:10.1080/10916466.2015.1135168.
  • Chappat, S. and Bilal, J., 2003. Sustainable development. The environmental road of the future. Life cycle analysis. Energy consumption & greenhouse gas emissions.
  • Chávez-Valencia, L.E., et al., 2007. Improving the compressive strengths of cold-mix asphalt using asphalt emulsion modified by polyvinyl acetate. Construction and Building Materials, 21 (3), 583–589. doi:10.1016/j.conbuildmat.2005.07.017.
  • Cross, S, 1999. Experimental cold in-place recycling with hydrated lime. Transportation Research Record, 1684, 186–193. doi:10.3141/1684-22.
  • Dulaimi, A., et al., 2016. New developments with cold asphalt concrete binder course mixtures containing binary cementitious filler (BBCF). Construction and Building Materials, 124, 414–423. doi:10.1016/j.conbuildmat.2016.07.114.
  • Dulaimi, A., et al., 2017. High performance cold asphalt concrete binder course using alkali-activated binary blended cementitious filler. Construction and Building Materials, 141, 160–170. doi:10.1016/j.conbuildmat.2017.02.155.
  • Ebels, L.J., 2008. Characterisation of material properties and behavior of cold bituminous mixtures for road pavements. Doctoral Dissertation. Stellenbosh University. South Africa.
  • Feng, L., et al., 2014. Investigation and analysis on the two-year energy consumption on asphalt pavement in Lúan City in China. In: J. Harvey, J. Agnès and D. Jones, eds. International Symposium on pavement life cycle assessment. Davis, CA: University of California, Pavement Research Center, 14–16.
  • García, A., et al., 2009. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Construction and Building Materials, 23 (10), 3175–3181. doi:10.1016/j.conbuildmat.2009.06.014.
  • García, A., et al., 2011a. Induction heating of mastic containing conductive fibers and fillers. Materials and Structures, 44 (2), 499–508. doi:10.1617/s11527-010-9644-2.
  • García, A., et al., 2011b. A simple model to define induction heating in asphalt mastic. Construction and Building Materials, 31, 38–46. doi:10.1016/j.conbuildmat.2011.12.046.
  • García, A., et al., 2012. Optimization of composition and mixing process of a self-healing porous asphalt. Construction and Building Materials, 30, 59–65. doi:10.1016/j.conbuildmat.2011.11.034.
  • Gómez-Meijide, B., et al., 2016. Effect of air voids content on asphalt self-healing via induction and infrared heating. Construction and Building Materials, 126, 957–966. doi:10.1016/j.conbuildmat.2016.09.115.
  • Jenkins, K.J. and Collings, D.S, 2017. Mix design of bitumen-stabilised materials – South Africa and abroad. Roads Materials and Pavement Design, 18 (2), 331–349. doi:10.1080/14680629.2016.1213511.
  • Jenkins, K.J., Long, F.M., and Ebels, L.J, 2007. Foamed bitumen mixes = shear performance? International Journal of Pavement Engineering, 8 (2), 85–98. doi:10.1080/10298430601149718.
  • Kishore Kumar, C., et al., 2008. Investigation of cold-in place recycled mixes in India. International Journal of Pavement Engineering, 9 (4), 265–274. doi:10.1080/10298430701551201.
  • Lizasoain-Arteaga, E., et al., 2019. Environmental impact assessment of induction-healed asphalt mixtures. Journal of Cleaner Production, 208, 1546–1556. doi:10.1016/j.jclepro.2018.10.223.
  • Martisson, K., et al., 2016. Calculation of energy and carbon dioxide on asphalt pavements. In: EAPA and Eurobitumen, organizer. 6th Euroasphalt & Eurobitume Congress, Jun 1–3, Prague, Czech Republic.
  • Ministerio de Fomento, 2002. Reciclado de Firmes. Orden Circular 8/2001. Dirección General de Carreteras, Madrid, Spain.
  • Ministerio de Fomento, 2014. Emulsiones Bituminosas. Artículo 214 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3), Madrid, Spain.
  • Ministerio de Obras Públicas y Transportes, 2002a. Normas NLT. NLT 159. Método Marshall para mezclas asfálticas. Ensayos de carreteras. Dirección General de Carreteras, 2nd ed. Madrid, Spain.
  • Ministerio de Obras Públicas y Transportes, 2002b. Normas NLT. NLT-161. Resistencia a compresión simple de mezclas bituminosas. Ensayos de carreteras. Dirección General de Carreteras, 2nd ed. Madrid, Spain.
  • Ministerio de Obras Públicas y Transportes, 2002c. Normas NLT. NLT-162. Efecto del agua sobre la cohesión de las mezclas bituminosas compactadas. Ensayos de carreteras. Dirección General de Carreteras, 2nd ed. Madrid, Spain.
  • Mogadan, B.B. and Mollashahi, H.F, 2017. Suggesting a simple design method for cold recycled asphalt mixes with asphalt emulsion. Journal of Civil Engineering and Management, 23 (7), 966–976. doi:10.3846/13923730.2017.1343200.
  • National Academies of Sciences, Engineering, and Medicine, 2011. Recycling and reclamation of asphalt pavements using in-place methods. Washington, DC: The National Academies Press. doi:10.17226/14568.
  • National Academies of Sciences, Engineering, and Medicine, 2017. Material properties of cold In-place recycled and full-depth reclamation asphalt concrete. Washington, DC: The National Academies Press. doi:10.17226/24902.
  • Nicholls, J.C., 1998. Asphalt surfacings. London: E&FN SPON.
  • Nivedya, M.K. and Veeraragavan, A., 2017. Bitumen-stabilised materials for sustainable road infrastructure. In: Babu G. Sivakumar, S. Saride, and B. Basha, eds, Sustainability issues in civil engineering. Springer transactions in civil and environmental engineering. Singapore: Springer, 35–50. doi: 10.1007/978-981-10-1930-2_3.
  • Oruc, S., Celik, F., and Akpinar, M.V, 2007. Effect of cement on emulsified asphalt mixtures. Journal of Materials Engineering and Performance, 16 (5), 578–583. doi:10.1007/s11665-007-9095-2.
  • Pérez, I., Medina, L., and del Val, M.A, 2013. Mechanical properties and behaviour of in-situ materials which are stabilised with bitumen emulsion. Road Materials and Pavement Design, 14 (2), 221–238. doi:10.1080/14680629.2013.779301.
  • Pérez, I., Medina, L., and del Val, M.A, 2016. Nonlinear elasto-plastic performance prediction of materials stabilized with bitumen emulsion in rural road pavements. Advances in Engineering Software, 91, 69–79. doi:10.1016/j.advengsoft.2015.10.009.
  • Pérez, I., Pasandín, A.R., and Medina, L, 2012. Hot mix asphalt using C&D waste as coarse aggregates. Materials and Design, 36, 840–846. doi:10.1016/j.matdes.2010.12.058.
  • Pinto, I. and Buss, A, 2018. Layer coefficients of cold in-place recycled layers from performance data. International Journal of Pavement Engineering (In press). doi: 10.1080/10298436.2018.1473863.
  • Roos, C., 2018. A design function for Bitumen stabilised material performance based on laboratory and field evaluation. Doctoral Dissertation. Stellenbosh University. South Africa.
  • Tabaković, A., McNally, C., and Fallon, E, 2016. Specification development for cold in-situ recycling of asphalt. Construction and Building Materials, 102 (1), 318–328. doi:10.1016/j.conbuildmat.2015.10.154.
  • Tebaldi, G., et al., 2014. Synthesis of standards and procedures for specimen preparation and in-field evaluation of cold-recycled asphalt mixtures. Roads Materials and Pavement Design, 15 (2), 272–299. doi:10.1080/14680629.2013.866707.
  • Thanaya, I.N.A, 2007. Evaluating and improving the performance of cold asphalt emulsion mixes. Civil Engineering Dimension, 9 (2), 64–69. doi:10.9744/ced.9.2.pp.%2064-69.
  • Wang, Y., et al., 2018. Cold recycling of reclaimed asphalt pavement towards improved engineering performance. Journal of Cleaner Production, 171, 1031–1038. doi:10.1016/j.jclepro.2017.10.132. doi: 10.1016/j.jclepro.2017.10.132
  • Xu, B., et al., 2016. Study on Marshall design parameters of porous asphalt mixture using limestone as coarse aggregate. Construction and Building Materials, 124, 846–854. doi:10.1016/j.conbuildmat.2016.08.005.