888
Views
33
CrossRef citations to date
0
Altmetric
Articles

Strength and fatigue performance for cement-treated aggregate base materials

, , , ORCID Icon, , , & show all
Pages 690-699 | Received 24 Aug 2018, Accepted 17 Jun 2019, Published online: 08 Jul 2019

References

  • Arulrajah, A., et al., 2015. Modulus of rupture evaluation of cement stabilized recycled glass/recycled concrete aggregate blends. Construction and Building Materials, 84, 146–155. Available from: http://www.sciencedirect.com/science/article/pii/S0950061815002950. doi: 10.1016/j.conbuildmat.2015.03.048
  • Arulrajah, A., et al., 2017. Effect of lime kiln dust as an alternative binder in the stabilization of construction and demolition materials. Construction and Building Materials, 152, 999–1007. Available from: http://www.sciencedirect.com/science/article/pii/S0950061817313727. doi: 10.1016/j.conbuildmat.2017.07.070
  • Consoli Nilo, C., et al., 2019. Use of sustainable binders in soil stabilization. Journal of Materials in Civil Engineering, 31 (2), 06018023. Available from: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002571 [Accessed 29 April 2019]. doi: 10.1061/(ASCE)MT.1943-5533.0002571
  • Davis, K., et al., 2007. Physical and chemical behavior of four cement-treated aggregates. Journal of Materials in Civil Engineering, 19 (10), 891–897. doi: 10.1061/(ASCE)0899-1561(2007)19:10(891)
  • Disfani, M.M., et al., 2014. Flexural beam fatigue strength evaluation of crushed brick as a supplementary material in cement stabilized recycled concrete aggregates. Construction and Building Materials, 68, 667–676. doi: 10.1016/j.conbuildmat.2014.07.007
  • Disfani, M.M., et al., 2018. Performance evaluation of semi-flexible permeable pavements under cyclic loads. International Journal of Pavement Engineering, 1–11. doi:10.1080/10298436.2018.1475666.
  • Du, S., 2016. Influence of chemical additives on mixing procedures and performance properties of asphalt emulsion recycled mixture with reclaimed cement-stabilized macadam. Construction and Building Materials, 118, 146–154. doi: 10.1016/j.conbuildmat.2016.05.050
  • Du, Y., et al., 2018. Preliminary investigation of the feasibility of using a superpave gyratory compactor to design cement-treated aggregate mixture. Applied Sciences, 8 (6), 946. doi: 10.3390/app8060946
  • Farhan, A.H., Dawson, A.R., and Thom, N.H., 2016. Effect of cementation level on performance of rubberized cement-stabilized aggregate mixtures. Materials & Design, 97, 98–107. doi: 10.1016/j.matdes.2016.02.059
  • Gnanendran, C., and Jegatheesan, P., 2010. Determination of fatigue life of a granular base material lightly stabilized with slag lime from indirect diametral tensile testing. Journal of Transportation Engineering, 136, 736–745. doi: 10.1061/(ASCE)TE.1943-5436.0000138
  • Gnanendran, C.T., and Paul, D.K., 2016. Fatigue characterization of lightly cementitiously stabilized granular base materials using flexural testing. Journal of Materials in Civil Engineering, 28 (9), 04016086. doi: 10.1061/(ASCE)MT.1943-5533.0001598
  • Graeff, A.G., et al., 2012. Fatigue resistance and cracking mechanism of concrete pavements reinforced with recycled steel fibres recovered from post-consumer tyres. Engineering Structures, 45, 385–395. doi: 10.1016/j.engstruct.2012.06.030
  • Hou, X., et al., 2011. Study on fracture toughness of cement treated aggregate. Advanced Materials Research, 280, 76–79. doi: 10.4028/www.scientific.net/AMR.280.76
  • Hu, L., et al., 2017. Development and application of an instantaneous impulsion-based detector to inspect the degree of compaction of the cement-stabilized macadam. International Journal of Pavement Research and Technology, 10 (6), 517–525. Available from: http://www.sciencedirect.com/science/article/pii/S1996681416302218. doi: 10.1016/j.ijprt.2017.04.002
  • Jameson, G., 2010. Guide to pavement technology: Part 2: Pavement structural design, 1921709154.
  • Lav, A., Lav, M., and Goktepe, A., 2006. Analysis and design of a stabilized fly ash as pavement base material. Fuel, 85 (16), 2359–2370. doi: 10.1016/j.fuel.2006.05.017
  • Li, L.J., et al., 2016. Mechanical characterization of waste-rubber-modified recycled-aggregate concrete. Journal of Cleaner Production, 124, 325–338. Available from: http://www.sciencedirect.com/science/article/pii/S0959652616300506. doi: 10.1016/j.jclepro.2016.03.003
  • Li, W., et al., 2017. Characteristics of dry shrinkage and temperature shrinkage of cement-stabilized steel slag. Construction and Building Materials, 134, 540–548. Available from: http://www.sciencedirect.com/science/article/pii/S095006181632147X. doi: 10.1016/j.conbuildmat.2016.12.214
  • Li, Q., et al., 2018. Cold recycling of lime-fly ash stabilized macadam mixtures as pavement bases and subbases. Construction and Building Materials, 169, 306–314. Available from: http://www.sciencedirect.com/science/article/pii/S0950061818305130. doi: 10.1016/j.conbuildmat.2018.03.030
  • Li, J., et al., 2019. Three-dimensional simulation of aggregate and asphalt mixture using parameterized shape and size gradation. Journal of Materials in Civil Engineering, 31 (3), 04019004. doi:10.1061/(asce)mt.1943-5533.0002623.
  • Litwinowicz A, B.A., 1994. Dynamic flexure testing for prediction of cement -treated pavement life. In: Australian Road Research Board Ltd (ARRB) Conference. Gold Coast, Queensland, Australia. Vermont South, Victoria, Australia: Australian Road Research Board Ltd (ARRB), 229–247.
  • Liu, P., et al., 2016. Application of semi-analytical finite element method to evaluate asphalt pavement bearing capacity.
  • Liu, P., et al., 2018. Study of the influence of pavement unevenness on the mechanical response of asphalt pavement by means of the finite element method. Journal of Traffic and Transportation Engineering (English Edition), 5 (3), 169–180. Available from: http://www.sciencedirect.com/science/article/pii/S2095756417304609. doi: 10.1016/j.jtte.2017.12.001
  • Lv, S., et al., 2018a. Normalization of fatigue characteristics for asphalt mixtures under different stress states. Construction and Building Materials, 177, 33–42. Available from: https://www.sciencedirect.com/science/article/pii/S0950061818311760. doi: 10.1016/j.conbuildmat.2018.05.109
  • Lv, S., et al., 2018b. Fatigue equation of cement-treated aggregate base materials under a true stress ratio. Applied Sciences, 8 (5), 691. doi: 10.3390/app8050691
  • Lv, S., et al., 2018c. Comparisons of synchronous measurement methods on various moduli of asphalt mixtures. Construction and Building Materials, 158, 1035–1045. doi: 10.1016/j.conbuildmat.2017.09.193
  • Lv, S., et al., 2018d. Fatigue damage characteristics considering the difference of tensile-compression modulus for asphalt mixture. Journal of Testing and Evaluation, 46 (6), 2470–2482. doi: 10.1520/JTE20170114
  • Lv, S., et al., 2019.  Fatigue equation for asphalt mixture under low temperature and low loading frequency conditions. Construction and Building Materials, 211, 1085–1093. doi:10.1016/j.conbuildmat.2019.03.312.
  • Ma, Y., et al., 2015. The bending fatigue performance of cement-stabilized aggregate reinforced with polypropylene filament fiber. Construction and Building Materials, 83, 230–236. Available from: http://www.sciencedirect.com/science/article/pii/S0950061815002275. doi: 10.1016/j.conbuildmat.2015.02.073
  • Mannan, U.A., Islam, M.R., and Tarefder, R.A., 2015. Effects of recycled asphalt pavements on the fatigue life of asphalt under different strain levels and loading frequencies. International Journal of Fatigue, 78, 72–80. Available from: http://www.sciencedirect.com/science/article/pii/S0142112315001140. doi: 10.1016/j.ijfatigue.2015.04.004
  • Mansoor, J., et al., 2018. Analysis of mechanical properties of self compacted concrete by partial replacement of cement with industrial wastes under elevated temperature. Applied Sciences, 8 (3), 364. doi: 10.3390/app8030364
  • Mohammadinia, A., et al., 2016. Stabilization of demolition materials for pavement base/subbase applications using fly ash and slag geopolymers: laboratory investigation. Journal of Materials in Civil Engineering, 28 (7), 04016033. doi: 10.1061/(ASCE)MT.1943-5533.0001526
  • Mohammadinia, A., et al., 2019. Flexural fatigue strength of demolition aggregates stabilized with alkali-activated calcium carbide residue. Construction and Building Materials, 199, 115–123. Available from: http://www.sciencedirect.com/science/article/pii/S0950061818330113. doi: 10.1016/j.conbuildmat.2018.12.031
  • Mráz, V., et al., 2015. Experimental assessment of fly-ash stabilized and recycled mixes. Journal of Testing and Evaluation, 43, 20140097. doi: 10.1520/JTE20140097
  • Nusit, K., and Jitsangiam, P., 2016. Damage behavior of cement-treated base material. Procedia Engineering, 143, 161–169. doi: 10.1016/j.proeng.2016.06.021
  • Ozer, H., et al., 2018. Prediction of pavement fatigue cracking at an accelerated testing section using asphalt mixture performance tests. International Journal of Pavement Engineering, 19 (3), 264–278. https://doi.org/10.1080/10298436.2017.1347435.
  • Parsons, R.L., and Kneebone, E., 2005. Field performance of fly ash stabilised subgrades. Proceedings of the Institution of Civil Engineers - Ground Improvement, 9 (1), 33–38. Available from: https://www.icevirtuallibrary.com/doi/abs/10.1680/grim.2005.9.1.33.
  • Poveda, E., et al., 2017. Influence of the fiber content on the compressive low-cycle fatigue behavior of self-compacting sfrc. International Journal of Fatigue, 101, 9–17. Available from: http://www.sciencedirect.com/science/article/pii/S0142112317301706. doi: 10.1016/j.ijfatigue.2017.04.005
  • Prasannan, A., et al., 2009. Studies on polyaniline–polypyrrole copolymer micro emulsions. Materials Chemistry and Physics, 116 (2–3), 406–414. doi: 10.1016/j.matchemphys.2009.04.014
  • RIOH, 2004. Technical specifications for construction of highway asphalt pavement (JTG F40-2004) . Beijing: Renmin Communication Press.
  • RIOH, 2009. Test methods of materials stabilized with inorganic binders for highway engineering (JTG E51-2009). Beijing: Renmin Communication Press.
  • RIOH, 2015. Construction specifications for highway road bases (JTJ/T F20-2015) . Beijing: Renmin Communication Press.
  • RIOH, 2017. Specifications for design of highway asphalt pavement (JTG D50-2017). Beijing: Renmin Communication Press.
  • Sha, A., 2008. Material characteristics of semi-rigid base. China Journal of Highway and Transport, 21 (1), 1–5.
  • Tangella, R., et al., 1990. Summary report on fatigue response of asphalt mixtures.
  • Wen, H., et al., 2014. Characterization of cementitiously stabilized layers for use in pavement design and analysis. Nchrp Report.
  • Xiao, F., et al., 2018. A literature review on cold recycling technology of asphalt pavement. Construction and Building Materials, 180, 579–604. doi: 10.1016/j.conbuildmat.2018.06.006
  • Xuan, D.X., Molenaar, A.a.A., and Houben, L.J.M., 2016. Shrinkage cracking of cement treated demolition waste as a road base. Materials and Structures, 49 (1), 631–640. https://doi.org/10.1617/s11527-015-0524-7.
  • Xue, J., and Jiang, Y., 2017. Analysis on the fatigue properties of vertical vibration compacted lime–fly ash-stabilized macadam. Construction and Building Materials, 155, 531–541. doi: 10.1016/j.conbuildmat.2017.08.057
  • Yan, K.-Z., Xu, H.-B., and Shen, G.-H., 2014. Novel approach to resilient modulus using routine subgrade soil properties. International Journal of Geomechanics, 14 (6), 04014025. doi: 10.1061/(ASCE)GM.1943-5622.0000369
  • Yeo, R., Vuong, B., and Alderson, A., 2002. Contract report-towards national test methods for stiffness and fatigue characterisation of stabilised materials. ARRB Transport Research, RC2028-002, 23.
  • You, L., et al., 2018a. Spectral element method for dynamic response of transversely isotropic asphalt pavement under impact load. Road Materials and Pavement Design, 19 (1), 223–238. doi: 10.1080/14680629.2016.1230513
  • You, L., et al., 2018b. Impact of interlayer on the anisotropic multi-layered medium overlaying viscoelastic layer under axisymmetric loading. Applied Mathematical Modelling, 61, 726–743. doi: 10.1016/j.apm.2018.05.020
  • You, L., et al., 2018c. Characteristics of water-foamed asphalt mixture under multiple freeze-thaw cycles: laboratory evaluation. Journal of Materials in Civil Engineering, 30 (11), 04018270. doi: 10.1061/(ASCE)MT.1943-5533.0002474
  • You, L., et al., 2019a. Assessing the mechanical responses for anisotropic multi-layered medium under harmonic moving load by spectral element method (sem). Applied Mathematical Modelling, 67, 22–37. doi: 10.1016/j.apm.2018.10.010
  • You, L., et al., 2019b. Effect of anisotropic characteristics on the mechanical behavior of asphalt concrete overlay. Frontiers of Structural and Civil Engineering, 13 (1), 110–122. doi: 10.1007/s11709-018-0476-4
  • Zhao, L., et al., 2018. Influence of mixing methods on performance of compressive strength for cement stabilized macadam mixture. China Journal of Highway and Transport, 31 (1), 151–158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.