420
Views
5
CrossRef citations to date
0
Altmetric
Articles

Estimation of water film depth for rutting pavement using IMU and 3D laser imaging data

ORCID Icon &
Pages 1334-1349 | Received 26 Mar 2019, Accepted 18 Oct 2019, Published online: 04 Nov 2019

Reference

  • American Association of State Highway and Transportation Officials (AASHTO), 2010. Standard practice for determining pavement deformation parameters and cross slope from collected transverse profiles. AASHTO Designation, PP 69-10, 1–7.
  • American Association of State Highway and Transportation Officials (AASHTO)., 2011. A policy on geometric design of highways and streets. Washington, DC: American Association of State Highway and Transportation Officials.
  • Balmer, G.G. and Gallaway, B.M., 1983. Pavement design and controls for minimizing automotive hydroplaning and increasing traction. In: W. Meyer and J. Walter, eds. Frictional interaction of tire and pavement. West Conshohocken, PA: ASTM International, 167–190.
  • Bancroft, J.B., and Lachapelle, G., 2011. Data fusion algorithms for multiple inertial measurement units. Sensors (Academic Journal), 11 (7), 67–71. doi:10.3390/s110706771.
  • Chesterton, J., Noel, N., and Noel, T., 2006. The use of the Gallaway formula for aquaplaning evaluation in New Zealand. Proceedings of 8th annual conference, transit New Zealand and New Zealand Institute of Highway Technology (NZIHT), Auckland, New Zealand.
  • Chu, L., and Fwa, T.F., 2016. Incorporating pavement skid resistance and hydroplaning risk considerations in asphalt mix design. Journal of Transportation Engineering, 142 (10), 1–10. doi:10.1061/(ASCE)TE.1943-5436.0000872.
  • Chu, L., Fwa, T.F., and Ong, G.P., 2015. Evaluation hydroplaning potential of rutted highway pavements. Journal of the Eastern Asia Society for Transportation Studies, 11, 1613–1622. doi:10.11175/easts.11.1613.
  • Ding, Y., and Wang, H., 2018. Evaluation of hydroplaning risk on permeable friction course using tire-water-pavement interaction. Transportation Research Record, 2672 (40), 408–417. doi:10.1177/0361198118781392.
  • Dong, H., Easa, S.M., and Li, J., 2007. Approximate extraction of spiralled horizontal curves from satellite imagery. Journal of Surveying Engineering, 133 (1), 36–40. doi:10.1061/(ASCE)0733-9453(2007)133:1(36).
  • Fernandes, A., and Neves, J., 2015. Threshold values of pavement surface properties for maintenance purpose based on accidents modelling. International Journal of Pavement Engineering, 15 (10), 917–924. doi:10.1080/10298436.2014.893324.
  • Fwa, T.F., Chu, L., and Tan, K.H., 2016. Rational procedure for determination of rut depth intervention level in network-level pavement management. Transportation Research Record, 2589, 59–67. doi:10.3141/2589-07.
  • Fwa, T.F., Pasindu, H., and Ong, G.P., 2012. Critical rut depth for pavement maintenance based on vehicle skidding and hydroplaning consideration. Journal of Transportation Engineering, 138 (4), 423–429. doi:10.1061/(ASCE)TE.1943-5436.0000336.
  • Gallaway, B.M., Schiller, R.E., and Rose, J.G., 1971. The effects of rainfall intensity, pavement cross slope, surface texture and drainage length on pavement water depths. Texas: Texas Transportation Institute. Texas A & M University Research Report, 138–142.
  • Gibreel, Y., Hassan, G., and Easa, S.M., 2000. Evaluation of highway consistency and safety: practical application: proceedings of the American Society of Civil engineers. Journal of Transportation Engineering, 126 (3), 193–201. doi:10.1061/(ASCE)0733-947X(2000)126:3(193).
  • Henrikas, S., and Vidmantas, V., 2013. Research and evaluation of ruts in the asphalt pavement on Lithuanian highways. Journal of Civil Engineering and Management, 19 (5), 609–621. doi:10.3846/13923730.2013.817481.
  • Hui, B., et al., 2018. Critical assessment of the impact of vehicle wandering on rut depth measurement accuracy using 13-point based lasers. Measurement, 123, 246–253. doi:10.1016/j.measurement.2018.03.069.
  • Kalantari, Z., and Folkeson, L., 2013. Road drainage in Sweden: current practice and suggestions for adaptation to climate change. Journal of Infrastructure Systems, 19 (2), 147–156. doi:10.1061/(ASCE)IS.1943-555X.0000119.
  • Kogbara, B.R., et al., 2016. A state-of-the-art review of parameters influencing measurement and modeling of skid resistance of asphalt pavements. Construction and Building Materials, 114, 602–617. doi:10.1016/j.conbuildmat.2016.04.002.
  • Lanza, L.G., Vuerich, E., and Gnecco, I., 2010. Analysis of highly accurate rain intensity measurements from a field test sites. Advances in Geosciences, 25, 37–44. doi:10.5194/adgeo-25-37-2010.
  • Lee, Y., Jang, W., and Skibniwski, M.J., 2009. Noise evaluation for pavement maintenance in metropolitan highway bridges. Journal of Performance of Constructed Facilities, 23 (3), 181–189. doi:10.1061/(ASCE)0887-3828(2009)23:3(181).
  • Luo, W., et al., 2019. Surface drainage evaluation of asphalt pavement using a new analytical water film depth model. Road Materials and Pavement Design, in press. doi:10.1080/14680629.2019.1590220.
  • Luo, W., and Li, L., 2018. Automatic geometry measurement for curved ramps using inertial measurement unit and 3D LiDAR system. Automation in Construction, 94, 214–232. doi:10.1016/j.autcon.2018.07.004.
  • Luo, W., and Li, L., 2019. Development of a new analytical water film depth (WFD) prediction model for asphalt pavement drainage evaluation. Construction and Building Materials, 2019 (218), 530–542. doi:10.1016/j.conbuildmat.2019.05.142.
  • Luo, W., Li, L., and Wang, C.P.K., 2018. Automatic horizontal curve identification and measurement using mobile mapping systems (MMS). Journal of Surveying Engineering, 144 (4), 04018007. doi:10.1061/(ASCE)SU.1943-5428.0000257.
  • Luo, W., Wang, C.P.K., and Li, L., 2014. Surface drainage evaluation for rigid pavements using inertial measurement unit and 1 mm 3D texture data. Transportation Research Record, 2457 (1), 121–128. doi:10.3141/2457-13.
  • Luo, W., Wang, C.P.K., and Li, L., 2016. Hydroplaning on sloping pavements based on inertial measurement unit (IMU) and 1 mm 3D laser imaging data. Periodica Polytechnica Transportation Engineering, 44 (1), 42–49. doi:10.3311/PPtr.8208.
  • Luo, W., Wang, C.P.K., and Li, L., 2017. Field test validation of water film depth (WFD) prediction models for pavement surface drainage. International Journal of Pavement Engineering, in press. doi:10.1080/10298436.2017.1394099.
  • Mataei, B., et al., 2018. Evaluation of pavement surface drainage using an automatied image acquisition and processing system. Automation in Construction, 86, 240–255. doi:10.1016/j.autcon.2017.11.010.
  • Nejad, F.M., et al., 2015. Characterization of permanent deformation resistance of precipitated calcium carbonate modified asphalt mixture. Journal of Civil Engineering and Management, 21 (5), 615–622. doi:10.3846/13923730.2014.890654.
  • Pasindu, H.R., Fwa, T.F., and Ong, G.P., 2016. Analytical evaluation of aircraft operational risks from runway rutting. International Journal of Pavement Engineering, 17 (9), 810–817. doi:10.1080/10298436.2015.1019501.
  • Qiu, S., et al., 2016. A comprehensive system for AASHTO PP69-10-based pavement rut evaluation using 1-mm 3D pavement surface model. International Journal of Pavement Engineering, 19 (2), 1–13. doi:10.1080/10298436.2016.1176163.
  • Qiu, S., et al., 2016. Reducing the effect of inaccurate lane identification on PP69-10-based Rut characterization. Journal of Infrastructure Systems, 22 (1), 04015009-1–12. doi:10.1061/(ASCE)IS.1943-555X.0000261.
  • Qiu, S., et al., 2018. A comprehensive system for AASHTO PP69-10-based pavement rut evaluation using 1-mm 3D pavement surface model. International Journal of Pavement Engineering, 19 (6), 489–501. doi:10.1080/10298436.2016.1176163.
  • Ram, S., and Chauhan, H.S., 1987. Drainage of Sloping Lands with Constant Replenishment. Journal of Irrigation and Drainage Engineering, 113 (2), 213–223. doi:10.1061/(ASCE)0733-9437(1987)113:2(213).
  • Resseal, W., et al., 2019. Modelling and simulation of pavement drainage. International Journal of Pavement Engineering, 20 (7), 801–810. doi:10.1080/10298436.2017.1347437.
  • Sezen, H., and Fisco, H., 2013. Evaluation and comparison of surface macrotexture and friction measurement methods. Journal of Civil Engineering and Management, 19 (3), 387–399. doi:10.3846/13923730.2012.746237.
  • Staufer, P., et al., 2012. Numerical modeling of water levels on pavements under extreme rainfall. Journal of Transportation Engineering, 138 (6), 732–740. doi:10.1061/(ASCE)TE.1943-5436.0000373.
  • Wang, C.P.K., 2011. Automated survey of pavement distress based on 2D and 3D laser images. Report for MBTC DOT 3023.
  • Zelelew, H.M., Papagiannakis, A.T., and Izeppi, E.D.D., 2013. Pavement macro-texture analysis using wavelets. International Journal of Pavement Engineering, 14 (8), 725–735. doi:10.1080/10298436.2012.705004.
  • Zhang, Y., et al., 2016. Modified dynamic modulus test and customised prediction model of asphalt-treated drainage layer materials for M-E pavement design. International Journal of Pavement Engineering, 179 (9), 818–828. doi:10.1080/10298436.2015.1019502.
  • Zhang, J., et al., 2018. Feasibility study on measurement of a physiological index value with an electrocardiogram tester to evaluate the pavement evenness and driving comfort. Measurement, 117, 1–7. doi:10.1016/j.measurement.2017.11.060.
  • Zhang, H., et al., 2018. Pavement maintenance-focused decision analysis on concession periods of PPP highway projects. Journal of Management in Engineering, 34 (1), 04017047. doi:10.1061/(ASCE)ME.1943-5479.0000568.
  • Zhang, K., Zhang, Z., and Luo, Y., 2018. Inspection method and evaluation standard based on cylindrical core sample for rutting resistance of asphalt pavement. Measurement, 117, 241–251. doi:10.1016/j.measurement.2017.12.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.