243
Views
8
CrossRef citations to date
0
Altmetric
Articles

Use of ANN and visual-manual classification for prediction of soil properties for paving purposes

, ORCID Icon & ORCID Icon
Pages 1482-1490 | Received 06 Mar 2020, Accepted 04 Aug 2020, Published online: 19 Aug 2020

References

  • AASHTO, 2004. Mechanistic-empirical pavement design guide: Of new and rehabilitated pavement structures – Final Report. NCHRP. American Association of State Highway and Transportation Officials. United States of America.
  • AASHTO, 2008. Mechanistic-empirical pavement design guide-A manual of practice. Washington, US: American Association of State Highway and Transportation Officials.
  • Ali, B., Rahman, M.A., and Rafizul, I.M., 2016. Prediction of California bearing ratio of stabilized soil using artificial neural network. In: 3rd International conference on Civil Engineering for Sustainable Development, 12–14 February, KUET, Khulna, Bangladesh, 977–987.
  • Beale, M.H., Hgaan, M.T., and Demuth, H.B., 2010. Neural network toolbox 7: User’s Guide. Natick: MathWorks.
  • Bhargavi, P. and Jyothi, S., 2009. Applying naive bayes data mining technique for classification of agricultural land soils. International Journal of Computer Science and Network Security, 9 (8), 117–122.
  • Bhargavi, P. and Jyothi, S., 2010. Soil classification using gatree. International Journal of Computing Science and Information Technology, 2 (5), 184–191. doi: https://doi.org/10.5121/ijcsit.2010.2514
  • Bounds, D.G., et al., 1988. A multilayer perceptron network for the diagnosis of low back pain. In: Proc. of, 2nd IEEE annual int'l conference on Neural Networks, June 21–24, San Diego, NJ, USA, 481–489.
  • Cybenko, G., 1989. Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2 (4), 303–314. doi: https://doi.org/10.1007/BF02551274
  • Departamento Nacional de Infraestrutura de Transportes, 2006. Manual de pavimentação. 3.ed. Diretoria de Planejamento e Pesquisa. Coordenação Geral de Estudos e Pesquisa. Instituto de Pesquisas Rodoviárias.– Rio de Janeiro.
  • Erzin, Y. and Turkoz, D., 2016. Use of neural networks for the prediction of the CBR value of some Aegean sands. Neural Computing and Applications, 27 (5), 1415–1426. doi: https://doi.org/10.1007/s00521-015-1943-7
  • Guilherme, A.T.P., 2016. Análise Comparativa de Modelos Para Previsão e Mapeamento de Propriedades Geotécnicas dos Solos da Microrregião de Mossoró-RN. (Masters)thesis, Universidade Federal do Ceará.
  • Gunaydin, O., Gokoglu, A., and Fener, M., 2010. Prediction of artificial soil’s unconfined compression strength test using statistical analyses and artificial neural networks. Advances in Engineering Software, 41 (9), 1115–1123. doi: https://doi.org/10.1016/j.advengsoft.2010.06.008
  • Haykin S., 2007. Neural networks, a comprehensive foundation (2nd ed.). Hamilton, ON, Canada: Pearson Education, McMaster University.
  • Hecht-Nelson, R., 1989. Neurocomputing. Boston, United States: Addison-Wesley Longman Publishing Co. Inc.
  • Kaniu, M.I. and Angeyo, K.H., 2015. Challenges in rapid soil quality assessment and opportunities presented by multivariate chemometric energy dispersive X-ray fluorescence and scattering spectroscopy. Geoderma, 241–242, 32–40. doi: https://doi.org/10.1016/j.geoderma.2014.10.014
  • Mollahasani, A., et al., 2010. Nonlinear neural-based modeling of soil cohesion intercept. KSCE Journal of Civil Engineering, 15 (5), 831–840. doi: https://doi.org/10.1007/s12205-011-1154-4
  • Nazzal, M.D. and Tatari, O., 2013. Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus. International Journal of Pavement Engineering, 14 (4), 364–373. doi: https://doi.org/10.1080/10298436.2012.671944
  • Neto, L.B., et al., 2006. Neuro-cpt: classificação de solos usando-se redes neurais artificiais. ENGEVISTA, 8 (1), 37–48.
  • Neto, D.S.A., et al., 2014. Pile settlement modeling with multilayer perceptrons. The Electronic Journal of Geotechnical Engineering, 19, 4517–4528.
  • Niels, H.C., et al., 2014. Comparison of neural network error measures for simulation of slender marine structures. Journal of Applied Mathematics, 2014 (11), 1–11.
  • Park, H.I., Keon, G.C., and lee, S.R., 2009. Prediction of resilient modulus of granular subgrade soils and subbase materials based on artificial neural network. Road Materials and Pavement Design, 10 (3), 647–665. doi: https://doi.org/10.1080/14680629.2009.9690218
  • Parvini, M., 2002. Artificial neural network modeling of pavement performance using expert judgement. Road Materials and Pavement Design, 3 (4), 373–384. doi: https://doi.org/10.1080/14680629.2002.9689931
  • Patel, R.S. and Desai, M.D., 2010. CBR predicted by index properties for alluvial soils of South Gujarat. In: Indian Geotechnical Conference, December 16–18, GEOtrendz. IGS Mumbai Chapter & IIT Bombay, 4.
  • Pinheiro, S.T., 2018. Cartografia geotécnica para a cidade de palmas-to: descrição táctil visual do solo da região sudeste, entre as avenidas lo-03 e lo-27. Undergraduate (monograph), Universidade Federal do Tocantins.
  • Pinto, C.S., 2006. Curso Básico de Mecânica dos Solos em 16 Aulas (3ª ed). São Paulo: Oficina Textos.
  • Putri, E.E., Kameswara Rao, N.S.V., and Mannan, M.A., 2012. Evaluation of modulus of elasticity and modulus of subgrade reaction of soils using CBR test. Journal of Civil Engineering Research, 2 (1), 34–40. doi: https://doi.org/10.5923/j.jce.20120201.05
  • Ribeiro, A.J.A., da Silva, C.A.U., and Barroso, S.H.A., 2015. Neural estimation of localization and classification of soils for use in low-traffic-volume roads. Transportation Research Record, 2473 (1), 98–106. doi: https://doi.org/10.3141/2473-12
  • Ribeiro, A.J.A., da Silva, C.A.U., and Barroso, S.H.A., 2018. Metodologia de baixo custo para mapeamento geotécnico aplicado à pavimentação. Transportes (Rio De Janeiro), 26 (2), 84–10.
  • Sabat, A.K., 2013. Prediction of California bearing ratio of a soil stabilized with lime and quarry dust using artificial neural network. Electronic Journal of Geotechnical Engineering, 18, 3261–3272.
  • Sadrossadat, H., Ali, E., and Saeedeh, O., 2016. Prediction of the resilient modulus of flexible pavement subgrade soils usingadaptive neuro-fuzzy inference systems. Construction and Building Materials, 123 (2016), 235–247. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.07.008.
  • Sitton, J.D., Zeinali, Y., and Story, B.A., 2017. Rapid soil classification using artificial neural networks for use in constructing compressed earth blocks. Construction and Building Materials, 138, 214–221. doi: https://doi.org/10.1016/j.conbuildmat.2017.02.006
  • Taskiran, T., 2010. Prediction of California bearing ratio (CBR) of fine grained soils by AI methods. Advances in Engineering Software, 41 (6), 886–892. doi: https://doi.org/10.1016/j.advengsoft.2010.01.003
  • Tenpe, A.R. and Patel, A., 2018. Application of genetic expression programming and artificial neural network for prediction of CBR. Road Materials and Pavement Design, 21 (2018), 1183–1200.
  • Yildirim, B. and Gunaydin, O., 2011. Estimation of California bearing ratio by using soft computing systems. Expert Systems with Applications, 38 (5), 6381–6391. doi: https://doi.org/10.1016/j.eswa.2010.12.054
  • Zhang, H. and Yu, T., 2018. Prediction of subgrade elastic moduli in different seasons based on BP neural network technology. Road Materials and Pavement Design, 19 (2018), 271–288. doi: https://doi.org/10.1080/14680629.2016.1259122
  • Zumrawi, M., 2012. Prediction of CBR from index properties of cohesive soils. In: In: annual conference of Postgraduate Studies and Scientific Research (Basic and Engineering Studies Board), 17–20 February, Friendship Hall, Khartoum, 1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.