1,690
Views
5
CrossRef citations to date
0
Altmetric
Articles

Characterisation of the climatic temperature variations in the design of rigid pavements

, , &
Pages 3222-3235 | Received 14 May 2019, Accepted 02 Feb 2021, Published online: 27 Feb 2021

References

  • ABAQUS/Standard, 2014. User's manual, version 6.14. Dassault Systèmes Simulia Corp, Online Database.
  • Alavi, M., Pouranian, M., and Hajj, E., 2014. Prediction of asphalt pavement temperature profile with finite control volume method. Transportation Research Record: Journal of the Transportation Research Board, 2456, 96–106.
  • Ali, W., and Urgessa, G., 2012. Numerical prediction model for temperature distributions in concrete at early ages. American Journal of Engineering and Applied Sciences, 5 (4), 282–290.
  • Barber, E.S., 1957. Calculation of maximum pavement temperatures from weather reports. Bulletin 168 Washington, D.C.: Highway Research Board, 1–8.
  • Bayraktarova, K., Eberhardsteiner, L., and Blab, R. 2017. Seasonal temperature distribution in rigid pavements. In: A. Loizos, I. Al-Qadi and S. T., eds. Proceedings of the 10th international conference on the bearing capacity of roads, railways and airfields (BCRRA 2017), 28–30 June 2017, Athen. CRC Press, 2087–2093.
  • Beckemeyer, C.A., Khazanovich, L., and Yu, H.T., 2002. Determining amount of built-in curling in jointed plain concrete pavement: case study of Pennsylvania I-80. Transportation Research Record, 1809, 85–92.
  • Bradbury, R., 1938. Reinforced concrete pavements. University of Wisconsin – Madison: Wire Reinforcement Institute.
  • Caliendo, C., and Parisi, A., 2010. Stress-prediction model for airport pavements with jointed concrete slabs. Journal of Transportation Engineering, 136 (7), 664–677.
  • Chandrappa, A., and Biligiri, K., 2015. Development of pavement-surface temperature predictive models: parametric approach. Journal of Materials in Civil Engineering, 28 (3), 04015143.
  • Chen, J., Wang, H., and Xie, P., 2019. Pavement temperature prediction: theoretical models and critical affecting factors. Applied Thermal Engineering, 158, 1–14.
  • Choubane, B., and Tia, M., 1995. Analysis and verification of thermal-gradient effects on concrete pavement. Journal of Transportation Engineering, 121 (1), 75–81.
  • Dempsey, B.J., Herlache, W., and Patel, A., 1985. Climatic-m-structural pavement analysis program. Transportation Research Record, 1095, 111–123.
  • Dempsey, B. and Thompson, M., 1970. A heat transfer model for evaluating frost action and temperature related pavements effects in multi-layered pavement systems. Highway Research Record, 342, 39–56.
  • Diefenderfer, B., Al-Qadi, I., and Diefenderfer, S., 2002. Model to predict pavement temperature profile: development and validation. Journal of Transportation Engineering, 132, 162–167.
  • Eberhardsteiner, L., etal, 2016. OBESTAS – Optimierte Bemessung starrer Aufbauten von Straßen. Vienna: Vienna University of Technology, Institute of Transportation.
  • Eberhardsteiner, L., and Blab, R., 2017. Design of bituminous pavements: a performance-related approach. Road Materials and Pavement Design, 20 (2), 244–258.
  • Eberhardsteiner, L., Foltin, K., Bayraktarova, K., and Blab, R., 2018. Performance-related approach for rigid pavement design. In: E. Masad, A. Bhasin, T. Scarpas, I. Menapace and A. Kumar, eds. International conference on advances in materials and pavement performance prediction (AM3P 2018), 16–18 April 2018, Doha. CRC Press, 457–461.
  • Eisenmann, J., 1979. Concrete pavements – design and construction (in German). München: Wilhelm Ernst and Sohn.
  • Eisenmann, J., and Leykauf, G., 1990. Simplified calculation method of slab curling caused by shrinkage. In: A. Loizos, I. Al-Qadi and S. T., eds. 2nd international workshop on theoretical design of concrete pavements, Madrid, Spain.
  • Eisenmann, J., and Leykauf, G., 2003. Concrete pavements – design and construction (in German). München: Ernst and Sohn.
  • FGSV, 1994. Entstehung und Verhütung von Frostschäden an Straßen. Bonn: FGSV.
  • FSV, 2016. RVS 03.08.63: Oberbaubemessung. Vienna: FSV.
  • FSV, 2020. RVS 03.08.69: Rechnerische Dimensionierung von Betonstraßen. Vienna: FSV.
  • Gao, X., Wei, Y., and Huang, W., 2017. Strain-based equivalent temperature gradient in concrete pavement and comparaisson with other quantification methods. Journal of Transportation Engineering, 18, 00–00.
  • Geiger, R., 1959. The climate near the ground. Cambridge: Harvard University Press.
  • Hermansson, A., 2002. Simulation of asphalt concrete (AC) pavement temperatures for use with FWD. Road Materials and Pavement Design, 3, 281–297.
  • Hermansson, A., 2004. Mathematical model for paved surface summer and winter temperature: comparison of calculated and measured temperatures. Cold Regions Science and Technology, 40, 1–17.
  • Hiller, J., and Roesler, J., 2010. Simplified nonlinear temperature curling analysis for jointed concrete pavements. Journal of Transportation Engineering, 136, 654–663.
  • Höller, R., Aminbaghai, M., Eberhardsteiner, L., Eberhardsteiner, J., Blab, R., Pichler, B., and Hellmich, C., 2019. Rigorous amendment of Vlasov's theory for thin elastic plates on elastic Winkler foundations, based on the principle of virtual power. European Journal of Mechanics – A/Solids, 73, 449–482.
  • Houben, L., 1992. Finite element analysis of plain concrete pavements (V): comparison with the Eisenmann theory. Journal 'BetonwegenNieuws, 88, 16–23.
  • Houben, I.L.J.M., 2009. Structural design of pavements. Available from: http://www.citg.tudelft.nl/en/about-faculty/departments/structural-engineering/sections/pavement-engineering/education/lectures/.
  • Huang, K., et al., 2017. A developed method of analyzing temperature and moisture profiles in rigid pavement slabs. Construction and Building Materials, 151, 782–788.
  • Ioannides, A., and Khazanovich, L., 1998. Nonlinear temperature effects on multilayered concrete pavements. Journal of Transportation Engineering, 124 (2), 128–136.
  • Jeong, J.H., and Zollinger, D., 2006. Finite-element modeling and calibration of temperature prediction of hydrating Portland cement concrete pavements. Journal of Materials in Civil Engineering, 18 (3), 317–324.
  • Khazanovich, L., et al., 2001. Development of rapid solutions for reinforced concrete pavement stresses. Transportation Research Record: Journal of the Transportation Research Board, 1778, 64–72.
  • Krebs, H. and Böinger, G., 1981. Temperaturberechnungen am bituminösen Straßenkörper. Heft 347. Forschung Straßenbau und Straßenverkehrstechnik Bonn-Bad Godesberg.
  • Krsmanc, R., Slak, A.S., and Demsar, J., 2013. Statistical approach for forecasting road surface temperature. Meteorological Applications, 20, 439–446.
  • Linke, F. and Möller, F., 1974. Handbuch der Geophysik. Stuttgart: Gebrüder Borntraeger.
  • McCullough, B., and Rasmussen, R., 1999. Fast-track paving: concrete temperature control and traffic opening criteria for bonded concrete overlays, volume 1: final report. Austin, TX: FHWA, US Department of Transportation.
  • Minhoto, M., et al., 2005. Predicting asphalt pavement temperature with a three-dimensional finite element method. Transportation Research Record, 1919 (1), 96–110.
  • Mohamed, A., and Hansen, W., 1996. Prediction of stresses in concrete pavements subjected to non-linear gradients. Cement and Concrete Composites, 18 (6), 381–387.
  • NCHRP, 2004. Guide for mechanistic-empirical design of new and rehabilitated pavement structures. Washington, DC.
  • Qin, Y., 2016. Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. International Journal of Heat and Mass Transfer, 97, 391–399.
  • Qin, Y., and Hiller, J.E., 2011. Modeling the temperature and stress distributions in rigid pavements: impact of solar radiation absorption and heat history development. KSCE Journal of Civil Engineering, 15 (8), 1361–1371.
  • Rao, S., and Roesler, J.R., 2005. Characterising effective built-in curling from concrete pavement field measurements. Journal of Transportation Engineering, 131 (4), 320–327.
  • Sherif, A., and Hassan, Y., 2004. Modelling pavement temperature for winter maintenance operations. Canadian Journal of Civil Engineering, 31 (2), 369–378.
  • Siddique, Z.Q., Hossain, M., and Meggers, D., 2005. Temperature and curling measurements on concrete pavement. In: The 2005 mid-continent transportation research symposium, 18–19 August 2018, Ames Iowa.
  • Solaimanian, M., and Kennedy, T., 1993. Predicting maximum pavement surface temperature using maximum air temperature and hourly solar radiation. Transportation Research Record, 1417, 1–11.
  • Teltayev, B., and Koblanbek, A., 2015. Modeling of transient temperature distribution in multilayer asphalt pavement. Geomechanics and Engineering, 8, 133–152.
  • Thomlinson, J., 1940. Temperature variations and consequent product by daily and seasonal temperature cycles in concrete slabs. Concrete Constructional Engineering, 36, 298–307.
  • VDI, 2001. VDI 4640: Thermische Nutzung des Untergrunds – Grundlagen, Genehmigungen, Umweltaspekte – Blatt 1. Düsseldorf: VDI.
  • Wang, D., 2012. Analytical approach to predict temperature profile in a multilayered pavement system based on measured surface temperature data. Journal of Transportation Engineering, 138 (5), 674–679.
  • Wang, D., 2016. Prediction of time-dependent temperature distribution within the pavement surface layer during FWD testing. Journal of Transportation Engineering, 142 (7), 06016002.
  • Wang, D., and Roesler, J., 2014. One-dimensional temperature profile prediction in multi-layered rigid pavement systems using a separation of variables method. International Journal of Pavement Engineering, 15 (5), 372–382.
  • Wang, D., Roesler, J., and Guo, D., 2009. Analytical approach to predicting temperature fields in multilayered pavement systems. Journal of Engineering Mechanics, 135 (4), 334–344.
  • Wistuba, M., 2003. Climatic influences on asphalt pavements: Determining the design temperature for the Austrian analytical pavements design. Heft 15. Vienna University Technology, Institute frustration, Research Center of Road Engineering.
  • Yavuzturk, C., Ksaibati, K., and Chiasson, A., 2005. Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering, 17 (4), 465–475.
  • Yu, H.T., Khazanovich, L., Darter, M.I., and Ardani, A., 1998. Analysis of concrete pavement responses to temperature and wheel loads measured from instrumented slabs. Transportation Research Record: Journal of the Transportation Research Board, 1639 (6), 94–101.