443
Views
4
CrossRef citations to date
0
Altmetric
Articles

A novel approach for resilient modulus prediction using extreme learning machine-equilibrium optimiser techniques

, , ORCID Icon, , , , , & ORCID Icon show all
Pages 3346-3356 | Received 20 Nov 2020, Accepted 13 Feb 2021, Published online: 15 Mar 2021

References

  • AASHTO, 1993. AASHTO guide for design of pavement structures. In: Sustainable waste management and recycling: construction demolition waste: proceedings of the international conference organised by the concrete and masonry research group.
  • AASHTO, 2003. AASHTO: T307-99 standard method of test for determining the resilient modulus of soils and aggregate materials. Washington: American Association of State Highway and Transportation Officials.
  • AASHTO, 2008. Mechanistic empirical pavement design guide: a manual practice. Washington: American Association of State Highway and Transportation Officials.
  • AASHTO, 2017. Standard method of test for resilient modulus of subgrade soils and untreated base/subbase materials. Test Procedure T307, AASHTO, Washington, D.C. doi:10.1155/2014/372838.
  • Abambres, Miguel, and Ferreira, Adelino, 2017. Application of ANN in pavement engineering: state-of-art. SSRN Electronic Journal, hal-02066889v2f. doi:10.2139/ssrn.3351973.
  • Abdullah, Shafika Sultan, et al., 2015. Extreme learning machines: a new approach for prediction of reference evapotranspiration. Journal of Hydrology, 527 (August), 184–195. doi:10.1016/j.jhydrol.2015.04.073.
  • Adeyemo, Josiah, and Stretch, Derek, 2018. Review of hybrid evolutionary algorithms for optimizing a reservoir. South African Journal of Chemical Engineering, 25 (June), 22–31. doi:10.1016/j.sajce.2017.11.004.
  • Alharbi, Fawaz, and Smadi, Omar, 2019. Predicting pavement performance utilizing artificial neural network (ANN). International Journal of Advanced Engineering, Management and Science, 5 (8), 504–508. doi:10.22161/ijaems.58.4.
  • Andrei, Dragos, Matthew W. Witczak, and William N. Houston. 2009. Resilient modulus predictive model for unbound pavement materials. In: Contemporary topics in ground modification, problem soils, and geo-support. Reston, VA: American Society of Civil Engineers, 401–408. doi:10.1061/41023(337)51.
  • Arisha, M., et al., 2018. Performance evaluation of construction and demolition waste materials for pavement construction in Egypt. Journal of Materials in Civil Engineering, 30 (2), 04017270. doi:10.1061/(ASCE)MT.1943-5533.0002127.
  • Chan, Arthur, Keoleian, Gregory, and Gabler, Eric, 2008. Evaluation of life-cycle cost analysis practices used by the Michigan department of transportation. Journal of Transportation Engineering, 134 (6), 236–245. doi:10.1061/(ASCE)0733-947X(2008)134:6(236).
  • Du, Dawei, Simon, Dan, and Ergezer, Mehmet, 2009. Biogeography-based optimization combined with evolutionary strategy and immigration refusal. In: 2009 IEEE International Conference on Systems, Man and Cybernetics, 997–1002. IEEE. doi:10.1109/ICSMC.2009.5346055.
  • ECP, 2008. Egyptian code of practice for urban and rural roads, edition 1: road materials and their tests (part four). The Ministry of Housing, Utilities and Urban Communities. doi:10.4236/oalib.1100711.
  • El-Ashwah, Ahmed S., et al., 2019. A new approach for developing resilient modulus master surface to characterize granular pavement materials and subgrade soils. Construction and Building Materials, 194 (January), 372–385. doi:10.1016/j.conbuildmat.2018.10.212.
  • El-Ashwah, Ahmed S., et al., 2020. Advanced characterization of unbound granular materials for pavement structural design in Egypt. International Journal of Pavement Engineering, 1–13. doi:10.1080/10298436.2020.1754416.
  • Fan, Junsong, et al., 2014. Improved biogeography-based optimization approach to secondary protein prediction. In: 2014 International joint conference on neural networks (IJCNN), 4223–4228. IEEE. doi:10.1109/IJCNN.2014.6889417.
  • Faramarzi, Afshin, et al., 2020. Equilibrium optimizer: a novel optimization algorithm. Knowledge-Based Systems, 191 (March), 105190. doi:10.1016/j.knosys.2019.105190.
  • Gabr, A. R., and Cameron, D. A., 2012. Properties of recycled concrete aggregate for unbound pavement construction. Journal of Materials in Civil Engineering, 24 (6), 754–764. doi:10.1061/(ASCE)MT.1943-5533.0000447.
  • Gabr, A. R., Mills, K. G., and Cameron, D. A., 2013. Repeated load triaxial testing of recycled concrete aggregate for pavement base construction. Geotechnical and Geological Engineering, 31 (1), 119–132. doi:10.1007/s10706-012-9572-8.
  • Gopalakrishnan, Kasthurirangan, 2010. Neural network–Swarm intelligence hybrid nonlinear optimization algorithm for pavement moduli back-calculation. Journal of Transportation Engineering, 136 (6), 528–536. doi:10.1061/(ASCE)TE.1943-5436.0000128.
  • Grosan, Crina, and Abraham, Ajith, 2007. Hybrid evolutionary algorithms: methodologies, architectures, and reviews. Studies in Computational Intelligence, 1–17. doi:10.1007/978-3-540-73297-6_1.
  • Hicks, RG, and Monismith, CL, 1971. Factors influencing the resilient response of granular materials. Highw Res Rec.
  • Hintze, Jerry L, and Nelson, Ray D, 1998. Violin plots: a box plot-density trace synergism statistical computing and graphics violin plots: a box plot-density trace synergism. Source: The American Statistician.
  • Huang, Gao, et al., 2015. Trends in extreme learning machines: a review. Neural Networks, 61 (January), 32–48. doi:10.1016/j.neunet.2014.10.001.
  • Huang, Guang-Bin, 2014. An insight into extreme learning machines: random neurons, random features and kernels. Cognitive Computation, 6 (3), 376–390. doi:10.1007/s12559-014-9255-2.
  • Inkoom, Sylvester, et al., 2019. Prediction of the crack condition of highway pavements using machine learning models. Structure and Infrastructure Engineering, 15 (7), 940–953. doi:10.1080/15732479.2019.1581230.
  • Jaafari, Abolfazl, et al., 2019. Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena, 175, 430–445. doi:10.1016/j.catena.2018.12.033.
  • Jafar-Zanjani, Samad, Inampudi, Sandeep, and Mosallaei, Hossein, 2018. Adaptive genetic algorithm for optical metasurfaces design. Scientific Reports, 8 (1), 11040. doi:10.1038/s41598-018-29275-z.
  • Jahed, Danial, et al., 2020. A novel approach for forecasting of ground vibrations resulting from blasting: modified particle swarm optimization coupled extreme learning machine. Engineering with Computers. doi:10.1007/s00366-020-00997-x.
  • Kaloop, Mosbeh R., et al., 2019a. Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using soft computing techniques. Frontiers of Structural and Civil Engineering, 13 (6), 1379–1392. doi:10.1007/s11709-019-0562-2.
  • Kaloop, Mosbeh R., et al., 2019b. Hybrid wavelet and principal component analyses approach for extracting dynamic motion characteristics from displacement series derived from multipath-affected high-rate GNSS observations. Remote Sensing, 12 (1), 79. doi:10.3390/rs12010079.
  • Kaloop, Mosbeh R., et al., 2020. A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of international roughness index of rigid pavements. International Journal of Pavement Engineering, 1–15. doi:10.1080/10298436.2020.1776281.
  • Kaloop, Mosbeh R., et al., 2019c. Particle swarm optimization algorithm-extreme learning machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases. Applied Sciences, 9 (16), 3221. doi:10.3390/app9163221.
  • Kim, Sung-Hee, Yang, Jidong, and Jeong, Jin-Hoon, 2014. Prediction of subgrade resilient modulus using artificial neural network. KSCE Journal of Civil Engineering, 18 (5), 1372–1379. doi:10.1007/s12205-014-0316-6.
  • Kvasov, Dmitri E., and Sergeyev, Yaroslav D., 2015. Deterministic approaches for solving practical black-box global optimization problems. Advances in Engineering Software, 80 (February), 58–66. doi:10.1016/j.advengsoft.2014.09.014.
  • Lekarp, Fredrick, Isacsson, Ulf, and Dawson, Andrew, 2000. State of the art. I: resilient response of unbound aggregates. Journal of Transportation Engineering, 126 (1), 66–75. doi:10.1061/(ASCE)0733-947X(2000)126:1(66).
  • Li, S. T., et al., 2019. Back-analysis of pavement thickness based on PSO-GA hybrid algorithms. IOP Conference Series: Earth and Environmental Science, 252 (July), 052066. doi:10.1088/1755-1315/252/5/052066.
  • Li, Yaohui, et al., 2017. A kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points. Journal of Global Optimization, 67 (1–2), 343–366. doi:10.1007/s10898-016-0455-z.
  • Liu, Hai, et al., 2015. Extreme learning machine based on improved genetic algorithm. In: Proceedings of the 5th international conference on information engineering for mechanics and materials. Paris: Atlantis Press. doi:10.2991/icimm-15.2015.38.
  • Mousa, Rabah, et al., 2017. Resilient modulus for unbound granular materials and subgrade soils in Egypt. In: A. Shanableh, M. Maalej, S. Barakat, M. Omar, S. Al-Toubat, R. Al-Ruzouq, and K. Hamad. MATEC web of conferences 120 (August): 06009. doi:10.1051/matecconf/201712006009.
  • Mousa, Eman, El-Badawy, Sherif, and Azam, Abdelhalim, 2020. Evaluation of reclaimed asphalt pavement as base/subbase material in Egypt. Transportation Geotechnics, 100414. doi:10.1016/j.trgeo.2020.100414.
  • Murlidhar, Bhatawdekar Ramesh, et al., 2020. A novel intelligent ELM-BBO technique for predicting distance of mine blasting-induced flyrock. Natural Resources Research. doi:10.1007/s11053-020-09676-6.
  • Nachar, Nadim, 2008. The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutorials in Quantitative Methods for Psychology, 4 (1), 13–20. doi:10.20982/tqmp.04.1.p013.
  • Pal, Mahesh, and Deswal, Surinder, 2014. Extreme learning machine based modeling of resilient modulus of subgrade soils. Geotechnical and Geological Engineering, 32 (2), 287–296. doi:10.1007/s10706-013-9710-y.
  • Pourtahmasb, Mohammad Saeed, Karim, Mohamed Rehan, and Shamshirband, Shahaboddin, 2015. Resilient modulus prediction of asphalt mixtures containing recycled concrete aggregate using an adaptive neuro-fuzzy methodology. Construction and Building Materials, 82 (May), 257–263. doi:10.1016/j.conbuildmat.2015.02.030.
  • Purnomo, D. M. J., et al., 2015. Genetic algorithm optimization for extreme learning machine based microalgal growth forecasting of Chlamydomonas Sp. In: 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS), 243–248. IEEE. doi:10.1109/ICACSIS.2015.7415189.
  • Reza, A., and Rahrovan, M., 2016. Application of artifitial neural network to predict the resilient modulus of stabilized base subjected to wet dry cycles. Computations and Materials in Civil Engineering, 1 (1), 37–47.
  • Santos, João, Ferreira, Adelino, and Flintsch, Gerardo, 2019. An adaptive hybrid genetic algorithm for pavement management. International Journal of Pavement Engineering, 20 (3), 266–286. doi:10.1080/10298436.2017.1293260.
  • Shiha, Mohamed, El-Badawy, Sherif, and Gabr, Alaa, 2020. Modeling and performance evaluation of asphalt mixtures and aggregate bases containing steel slag. Construction and Building Materials, 248, 118710. doi:10.1016/j.conbuildmat.2020.118710.
  • Simon, Dan, 2008. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12 (6), 702–713. doi:10.1109/TEVC.2008.919004.
  • Solanki, Pranshoo, Zaman, Musharraf, and Ebrahimi, Ali, 2009. Regression and artificial neural network modeling of resilient modulus of subgrade soils for pavement design applications. In: Studies in computational intelligence, 269–304. doi:10.1007/978-3-642-04586-8_10.
  • Taylor, Karl E., 2005. Taylor diagram primer. Work. Pap. doi:10.1029/2000JD900719.
  • Wei, Yan, et al., 2019. Application of extreme learning machine for predicting chlorophyll-a concentration inartificial upwelling processes. Mathematical Problems in Engineering, 2019 (May), 1–11. doi:10.1155/2019/8719387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.