190
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of white cement bypass dust on the degradation of roller compacted concrete subjected to sulphate attack

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3662-3676 | Received 25 Jan 2021, Accepted 02 Apr 2021, Published online: 19 Apr 2021

References

  • ACI 325.10R-95, 2001. Report on Roller-Compacted Concrete Pavements. ACI Committee 325, American Concrete Institute.
  • Adamu, M., Mohammed, B.S., and Liew, M.S., 2018a. Mechanical properties and performance of high volume fly ash roller compacted concrete containing crumb rubber and nano silica. Construction and Building Materials, 171, 521–538. doi:10.1016/j.conbuildmat.2018.03.138.
  • Adamu, M., Mohammed, B.S., and Liew, M.S., 2018b. Effect of crumb rubber and Nano silica on the creep and drying shrinkage of roller compacted concrete pavement. International Journal of GEOMATE, 15 (47), 58–65. doi:10.21660/2018.47.22082.
  • Aghaeipour, A. and Madhkhan, M., 2017. Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability. Construction and Building Materials, 141, 533–541. doi:10.1016/j.conbuildmat.2017.03.019.
  • Aghayan, I., Khafajeh, R., and Shamsaei, M., 2021. Life cycle assessment, mechanical properties, and durability of roller compacted concrete pavement containing recycled waste materials. International Journal of Pavement Research and Technology, 14 (5), 595–606. doi:10.1007/s42947-020-0217-7.
  • Ameli, A., Karan, E.P., and Hashemi, S.A.H., 2020. Development of designs for RCC mixtures with waste material. International Journal of Pavement Engineering, 1–13. doi:10.1080/10298436.2020.1722817.
  • Ashteyat, A.M., Haddad, R.H., and Obaidat, Y.T., 2018. Case study on production of self-compacting concrete using white cement by pass dust. Case Studies in Construction Materials, 9, e00190. doi:10.1016/j.cscm.2018.e00190.
  • Ashteyat, A.M., et al., 2011. Properties of Portland cement mortar incorporating white cement bypass dust. Canadian Journal of Civil Engineering, 38 (12), 1355–1362.
  • Ashteyat, A.M., et al., 2019. Mechanical and durability behaviour of roller-compacted concrete containing white cement by pass dust and polypropylene fibre. European Journal of Environmental and Civil Engineering, 1–18. doi:10.1080/19648189.2019.1652694.
  • ASTM C595 / C595M-20, 2020. Standard specification for blended hydraulic cements. ASTM International, West Conshohocken, PA. www.astm.org.
  • Bary, B., et al., 2014. Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar. Cement and Concrete Composites, 49, 70–83. doi:10.1016/j.cemconcomp.2013.12.010.
  • Boussetta, I., El Euch Khay, S., and Neji, J., 2020. Experimental testing and modelling of roller compacted concrete incorporating RAP waste as aggregates. European Journal of Environmental and Civil Engineering, 24 (11), 1729–1743. doi:10.1080/19648189.2018.1482792.
  • Daous, M.A., 2004. Utilization of cement kiln dust and fly ash in cement blends in Saudi Arabia. Engineering Sciences, 15 (1), 33–45.
  • Debbarma, S., et al., 2020. Utilization of industrial and agricultural wastes for productions of sustainable roller compacted concrete pavement mixes containing reclaimed asphalt pavement aggregates. Resources, Conservation and Recycling, 152, 104504. doi:10.1016/j.resconrec.2019.104504.
  • Feng, P., et al., 2015. Microstructural origins of cement paste degradation by external sulfate attack. Construction and Building Materials, 96, 391–403. doi:10.1016/j.conbuildmat.2015.07.186.
  • Gu, Y., et al., 2019. Pore size analyses of cement paste exposed to external sulfate attack and delayed ettringite formation. Cement and Concrete Research, 123, 105766. doi:10.1016/j.cemconres.2019.05.011.
  • Haghnejad, M. and Modarres, A, 2020. Effect of freeze-thaw cycles on the response of roller compacted concrete pavement reinforced by recycled polypropylene fibre under monotonic and cyclic loadings. Road Materials and Pavement Design, 1–17. doi:10.1080/14680629.2020.1794942.
  • Ikumi, T., et al., 2014. Alternative methodology to consider damage and expansions in external sulfate attack modeling. Cement and Concrete Research, 63, 105–116. doi:10.1016/j.cemconres.2014.05.011.
  • Ikumi, T., et al., 2016. Simplified methodology to evaluate the external sulfate attack in concrete structures. Materials & Design, 89, 1147–1160. doi:10.1016/j.matdes.2015.10.084.
  • Jingfu, K., Chuncui, H., and Zhenli, Z, 2009. Strength and shrinkage behaviors of roller-compacted concrete with rubber additives. Materials and Structures, 42 (8), 1117–1124. doi:10.1617/s11527-008-9447-x.
  • Kunther, W., Lothenbach, B., and Scrivener, K.L, 2013. On the relevance of volume increase for the length changes of mortar bars in sulfate solutions. Cement and Concrete Research, 46, 23–29. doi:10.1016/j.cemconres.2013.01.002.
  • Lam, M.N.T., Le, D.H., and Jaritngam, S, 2018. Compressive strength and durability properties of roller-compacted concrete pavement containing electric arc furnace slag aggregate and fly ash. Construction and Building Materials, 191, 912–922. doi:10.1016/j.conbuildmat.2018.10.080.
  • Lam, N.T.M., Nguyen, D.L., and Le, D.H, 2020. Predicting compressive strength of roller-compacted concrete pavement containing steel slag aggregate and fly ash. International Journal of Pavement Engineering, 1–14. doi:10.1080/10298436.2020.1766688.
  • Lee, S.T., Moon, H.Y., and Swamy, R.N, 2005. Sulfate attack and role of silica fume in resisting strength loss. Cement and Concrete Composites, 27 (1), 65–76. doi:10.1016/j.cemconcomp.2003.11.003.
  • Li, S.S., et al., 2020. Variation in the sulfate attack resistance of iron rich-phosphoaluminate cement with mineral admixtures subjected to a Na2SO4 solution. Construction and Building Materials, 230, 116817. doi:10.1016/j.conbuildmat.2019.116817.
  • Liu, P., et al., 2019. Effect of sulfate solution concentration on the deterioration mechanism and physical properties of concrete. Construction and Building Materials, 227, 116641. doi:10.1016/j.conbuildmat.2019.08.022.
  • Liu, T., et al., 2018. Experimental investigation on the durability performances of concrete using cathode ray tube glass as fine aggregate under chloride ion penetration or sulfate attack. Construction and Building Materials, 163, 634–642. doi:10.1016/j.conbuildmat.2017.12.135.
  • Madhkhan, M., Azizkhani, R., and Harchegani, M.T., 2012. Effects of pozzolans together with steel and polypropylene fibers on mechanical properties of RCC pavements. Construction and Building Materials, 26 (1), 102–112. doi:10.1016/j.conbuildmat.2011.05.009.
  • Mardani-Aghabaglou, A., Andiç-Çakir, Ö., and Ramyar, K., 2013. Freeze–thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method. Cement and Concrete Composites, 37, 259–266. doi:10.1016/j.cemconcomp.2013.01.009.
  • Min, H., et al., 2019. An effective transport model of sulfate attack in concrete. Construction and Building Materials, 216, 365–378. doi:10.1016/j.conbuildmat.2019.04.218.
  • Moore, A. and Taylor, H.F.W., 1968. Crystal structure of ettringite. Nature, 218 (5146), 1048–1049.
  • Moradi, S. and Shahnoori, S., 2021. Eco-friendly mix for roller-compacted concrete: effects of Persian-gulf-dredged marine sand on durability and resistance parameters of concrete. Construction and Building Materials, 281, 122555. doi:10.1016/j.conbuildmat.2021.122555.
  • Najim, K.B., Mahmod, Z.S., and Atea, A.K.M., 2014. Experimental investigation on using cement kiln dust (CKD) as a cement replacement material in producing modified cement mortar. Construction and Building Materials, 55, 5–12. doi:10.1016/j.conbuildmat.2014.01.015.
  • Omran, A., et al., 2017. Production of roller-compacted concrete using glass powder: field study. Construction and Building Materials, 133, 450–458. doi:10.1016/j.conbuildmat.2016.12.099.
  • Othman, A.M., 2009. Incorporation of white cement dust on rubber modified asphalt concrete mixtures. International Journal of Civil & Environmental Engineering IJCEE, 9 (10), 40–51.
  • Ouyang, W.Y., Chen, J.K., and Jiang, M.Q., 2014. Evolution of surface hardness of concrete under sulfate attack. Construction and Building Materials, 53, 419–424. doi:10.1016/j.conbuildmat.2013.11.107.
  • Powers, T. C., 1968. Properties of fresh concrete. 1st ed. New York: John Wiley and Sons.
  • Qin, S., et al., 2020. A chemo-transport-damage model for concrete under external sulfate attack. Cement and Concrete Research, 132, 106048. doi:10.1016/j.cemconres.2020.106048.
  • Rahmani, E., Sharbatdar, M.K., and Beygi, M.H.A., 2020. A comprehensive investigation into the effect of water to cement ratios and cement contents on the physical and mechanical properties of roller compacted concrete pavement (RCCP). Construction and Building Materials, 253, 119177. doi:10.1016/j.conbuildmat.2020.119177.
  • Ramadan, K.Z. and Ashteyat, A.M., 2009. Utilization of white cement bypass dust as filler in asphalt concrete mixtures. Canadian Journal of Civil Engineering, 36 (2), 191–195. doi:10.1139/L08-124.
  • Rezaei, M.R., Abdi Kordani, A., and Zarei, M., 2020. Experimental investigation of the effect of Micro Silica on roller compacted concrete pavement made of recycled asphalt pavement materials. International Journal of Pavement Engineering, 1–15. doi:10.1080/10298436.2020.1802024.
  • Siddique, R., 2006. Utilization of cement kiln dust (CKD) in cement mortar and concrete—an overview. Resources, Conservation and Recycling, 48 (4), 315–338. doi:10.1016/j.resconrec.2006.03.010.
  • Sukontasukkul, P., et al., 2019. Case investigation on application of steel fibers in roller compacted concrete pavement in Thailand. Case Studies in Construction Materials, 11, e00271. doi:10.1016/j.cscm.2019.e00271.
  • Taha, R., et al., 2002. Use of cement bypass dust as filler in asphalt concrete mixtures. Journal of Materials in Civil Engineering, 14 (4), 338–343. doi:10.1061/(ASCE)0899-1561(2002)14:4(338).
  • Tavakoli, D., et al., 2020. Properties of roller-compacted concrete pavement containing waste aggregates and Nano SiO2. Construction and Building Materials, 249, 118747. doi:10.1016/j.conbuildmat.2020.118747.
  • Tixier, R. and Mobasher, B., 2003. Modeling of damage in cement-based materials subjected to external sulfate attack. I: formulation. Journal of Materials in Civil Engineering, 15 (4), 305–313. doi:10.1061/(ASCE)0899-1561(2003)15:4(305).
  • Udoeyo, F.F. and Hyee, A., 2002. Strengths of cement kiln dust concrete. Journal of Materials in Civil Engineering, 14 (6), 524–526. doi:10.1061/(ASCE)0899-1561(2002)14:6(524).
  • Villena, J., Trichês, G., and Prudêncio, Jr., L.R., 2011. Replacing the aggregate by rice husk ash in roller compacted concrete for composite pavements. In: Pavements and materials: recent advances in design, testing and construction, 19–27. https://doi.org/10.1061/47623(402)3.
  • Whitehurst, E.A., 1951. Soniscope tests concrete structures. Journal Proceedings, 47 (2), 433–444.
  • Wu, J., et al., 2020. Effect of multiple ions on the degradation in concrete subjected to sulfate attack. Construction and Building Materials, 259, 119846. doi:10.1016/j.conbuildmat.2020.119846.
  • Yu, Z., et al., 2015. Accelerated simulation of chloride ingress into concrete under drying–wetting alternation condition chloride environment. Construction and Building Materials, 93, 205–213. doi:10.1016/j.conbuildmat.2015.05.090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.