503
Views
10
CrossRef citations to date
0
Altmetric
Articles

Evolutionary and swarm intelligence algorithms on pavement maintenance and rehabilitation planning

, ORCID Icon, , ORCID Icon &
Pages 4649-4663 | Received 07 Apr 2021, Accepted 11 Aug 2021, Published online: 25 Aug 2021

References

  • Abdelaziz, N., et al., 2020. International roughness index prediction model for flexible pavements. International Journal of Pavement Engineering, 21, 88–99. doi:10.1080/10298436.2018.1441414.
  • Abualigah, L., et al., 2021. The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609. doi:10.1016/j.cma.2020.113609.
  • Adrian, A.M., Utamima, A., and Wang, K.-J., 2015. A comparative study of GA, PSO and ACO for solving construction site layout optimization. KSCE Journal of Civil Engineering, 19, 520–527. doi:10.1007/s12205-013-1467-6.
  • Albuquerque, F.S. and Núñez, W.P., 2011. Development of roughness prediction models for low-volume road networks in Northeast Brazil. Transportation Research Record: Journal of the Transportation Research Board, 2205, 198–205. doi:10.3141/2205-25.
  • Augeri, M.G., Greco, S., and Nicolosi, V., 2019. Planning urban pavement maintenance by a new interactive multiobjective optimization approach. European Transport Research Review, 11, 17. doi:10.1186/s12544-019-0353-9.
  • Bannour, A., et al., 2019. Optimization of the maintenance strategies of roads in Morocco: calibration study of the degradations models of the highway development and management (HDM-4) for flexible pavements. International Journal of Pavement Engineering, 20, 245–254. doi:10.1080/10298436.2017.1293261.
  • Breiman, L., 2001. Random forests. Machine Learning, 45, 5–32.
  • Chan, W.T., Fwa, T.F., and Tan, C.Y., 1994. Road-maintenance planning using genetic algorithms. I: formulation. Journal of Transportation Engineering, 120, 693–709. doi:10.1061/(ASCE)0733-947X(1994)120:5(693).
  • Chen, H., et al., 2020. Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Future Generation Computer Systems, 111, 175–198. doi:10.1016/j.future.2020.04.008.
  • Donev, V. and Hoffmann, M, 2020. Optimisation of pavement maintenance and rehabilitation activities, timing and work zones for short survey sections and multiple distress types. International Journal of Pavement Engineering, 21, 583–607. doi:10.1080/10298436.2018.1502433.
  • Dorigo, M., Maniezzo, V., and Colorni, A., 1996. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26, 29–41. doi:10.1109/3477.484436.
  • Eberhart, R. and Kennedy, J., 1995. A new optimizer using particle swarm theory, in: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, pp. 39–43. doi:10.1109/MHS.1995.494215.
  • Elhadidy, A.A., Elbeltagi, E.E., and Ammar, M.A., 2015. Optimum analysis of pavement maintenance using multi-objective genetic algorithms. HBRC Journal, 11, 107–113. doi:10.1016/j.hbrcj.2014.02.008.
  • Elhadidy, A.A., El-Badawy, S.M., and Elbeltagi, E.E., 2019. A simplified pavement condition index regression model for pavement evaluation. International Journal of Pavement Engineering, 1–10. doi:10.1080/10298436.2019.1633579.
  • Elhadidy, A.A., Elbeltagi, E.E., and El-Badawy, S.M., 2020. Network-based optimization system for pavement maintenance using a probabilistic simulation-based genetic algorithm approach. Journal of Transportation Engineering, Part B: Pavements, 146, 04020069. doi:10.1061/JPEODX.0000237.
  • Eskandar, H., et al., 2012. Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110–111, 151–166. doi:10.1016/j.compstruc.2012.07.010.
  • Fani, A., et al., 2020a. Pavement maintenance and rehabilitation planning optimisation under budget and pavement deterioration uncertainty. International Journal of Pavement Engineering, 1–11. doi:10.1080/10298436.2020.1748628.
  • Fani, A., et al., 2020b. A progressive hedging approach for large-scale pavement maintenance scheduling under uncertainty. International Journal of Pavement Engineering, 1–13. doi:10.1080/10298436.2020.1859506.
  • Faramarzi, A., et al., 2020. Marine predators algorithm: a nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377. doi:10.1016/j.eswa.2020.113377.
  • Gao, L. and Zhang, Z., 2012. Approximation approach to problem of large-scale pavement maintenance and rehabilitation. Transportation Research Record: Journal of the Transportation Research Board, 2304, 112–118. doi:10.3141/2304-13.
  • George, K.P., 2000. MDOT pavement management system: prediction models and feedback system.
  • Ghavami, S., et al., 2021. The impacts of nano-SiO2 and silica fume on cement kiln dust treated soil as a sustainable cement-free stabilizer. Construction and Building Materials. doi:10.1016/j.conbuildmat.2021.122918.
  • Haas, R. and Hudson, W.R, 2015. Pavement asset management. Hoboken, NJ: John Wiley & Sons.
  • Hafez, M., Ksaibati, K., and Atadero, R.A., 2018. Applying large-scale optimization to evaluate pavement maintenance alternatives for low-volume roads using genetic algorithms. Transportation Research Record: Journal of the Transportation Research Board, 2672, 205–215. doi:10.1177/0361198118781147.
  • Han, C., et al., 2020a. An intelligent decision-making framework for asphalt pavement maintenance using the clustering-PageRank algorithm. Engineering Optimization, 52, 1829–1847. doi:10.1080/0305215X.2019.1677636.
  • Han, C., et al., 2020b. Intelligent decision model of road maintenance based on improved weight random forest algorithm. International Journal of Pavement Engineering, 1–13. doi:10.1080/10298436.2020.1784418.
  • Holland, J.H., 1976. Book review. The University of Michigan Press. doi:10.1111/j.1559-3584.1962.tb04856.x.
  • Islam, S. and Buttlar, W.G., 2012. Effect of pavement roughness on user costs. Transportation Research Record: Journal of the Transportation Research Board, 2285, 47–55. doi:10.3141/2285-06.
  • Khavandi Khiavi, A. and Mohammadi, H., 2018. Multiobjective optimization in pavement management system using NSGA-II method. Journal of Transportation Engineering, Part B: Pavements, 144, 04018016. doi:10.1061/JPEODX.0000041.
  • Kırbaş, U. and Karaşahin, M., 2016. Performance models for hot mix asphalt pavements in urban roads. Construction and Building Materials, 116, 281–288. doi:10.1016/j.conbuildmat.2016.04.118.
  • Li, X., et al., 2020. Building auto-encoder intrusion detection system based on random forest feature selection. Computers & Security, 95, 101851. doi:10.1016/j.cose.2020.101851.
  • Mathew, B.S. and Isaac, K.P., 2014. Optimisation of maintenance strategy for rural road network using genetic algorithm. International Journal of Pavement Engineering, 15, 352–360. doi:10.1080/10298436.2013.806807.
  • Mazari, M. and Rodriguez, D.D., 2016. Prediction of pavement roughness using a hybrid gene expression programming-neural network technique. Journal of Traffic and Transportation Engineering (English Edition), 3, 448–455. doi:10.1016/j.jtte.2016.09.007.
  • Moreira, A.V., et al., 2017. Coordination of user and agency costs using two-level approach for pavement management optimization. Transportation Research Record: Journal of the Transportation Research Board, 2639, 110–118. doi:10.3141/2639-14.
  • Naseri, H., Ali, M., and Ghasbeh, E., 2018. Time-cost trade off to compensate delay of project using genetic algorithm and linear programming. International Journal of Innovation, Management and Technology, 9. doi:10.18178/ijimt.2018.9.6.826.
  • Naseri, H., Jahanbakhsh, H., and Moghadas Nejad, F., 2019. Developing a novel machine learning method to predict the compressive strength of fly ash concrete in different ages. AUT Journal of Civil Engineering, 0. doi:10.22060/AJCE.2019.16124.5569.
  • Naseri, H., Fani, A., and Golroo, A., 2020a. Toward equity in large-scale network-level pavement maintenance and rehabilitation scheduling using water cycle and genetic algorithms. International Journal of Pavement Engineering, 1–13. doi:10.1080/10298436.2020.1790558.
  • Naseri, H., et al., 2020b. Designing sustainable concrete mixture by developing a new machine learning technique. Journal of Cleaner Production, 258, 120578. doi:10.1016/j.jclepro.2020.120578.
  • Naseri, H., et al., 2021a. Sustainable pavement maintenance and rehabilitation planning using differential evolutionary programming and coyote optimisation algorithm. International Journal of Pavement Engineering, 1–18. doi:10.1080/10298436.2021.1873331.
  • Naseri, H., et al., 2021b. Toward sustainability in optimizing the fly ash concrete mixture ingredients by introducing a new prediction algorithm. Environment, Development and Sustainability. doi:10.1007/s10668-021-01554-2.
  • Office of Road Maintenance (ORM), 2019. Roads information [Data set]. Iran’s Road Maint. Transp. Organ. (RMTO), Tehran, Iran, Available from http://www.rmto.ir.
  • Ouyang, Y. and Madanat, S., 2004. Optimal scheduling of rehabilitation activities for multiple pavement facilities: exact and approximate solutions. Transportation Research Part A: Policy and Practice, 38, 347–365. doi:10.1016/j.tra.2003.10.007.
  • Paterson, W.D.O., 1987. Road deterioration and maintenance effects: models for planning and management. Washington, DC: World Bank Publications.
  • Sadollah, A., Eskandar, H., and Kim, J.H, 2015. Water cycle algorithm for solving constrained multi-objective optimization problems. Applied Soft Computing, 27, 279–298. doi:10.1016/j.asoc.2014.10.042.
  • Sandra, A.K. and Sarkar, A.K., 2013. Development of a model for estimating International Roughness Index from pavement distresses. International Journal of Pavement Engineering, 14, 715–724. doi:10.1080/10298436.2012.703322.
  • Santos, J., Ferreira, A., and Flintsch, G., 2019. An adaptive hybrid genetic algorithm for pavement management. International Journal of Pavement Engineering, 20, 266–286. doi:10.1080/10298436.2017.1293260.
  • Seyedshohadaie, S.R., Damnjanovic, I., and Butenko, S., 2010. Risk-based maintenance and rehabilitation decisions for transportation infrastructure networks. Transportation Research Part A: Policy and Practice, 44, 236–248. doi:10.1016/j.tra.2010.01.005.
  • Shahin, M.Y., 2005. Pavement management for airports, roads, and parking lots. New York: Springer.
  • Shirzadi Javid, A.A., Naseri, H., and Etebari Ghasbeh, M.A., 2020. Estimating the optimal mixture design of concrete pavements using a numerical method and meta-heuristic algorithms. Iranian Journal of Science and Technology, Transactions of Civil Engineering. doi:10.1007/s40996-020-00352-6.
  • Sindi, W. and Agbelie, B., 2020. Assignments of pavement treatment options: Genetic Algorithms versus Mixed-Integer programming. Journal of Transportation Engineering, Part B: Pavements, 146, 04020008. doi:10.1061/JPEODX.0000163.
  • Storn, R. and Price, K., 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. doi:10.1023/A:1008202821328.
  • Tayebi, N.R., Nejad, F.M., and Mola, M., 2014. Comparison between GA and PSO in analyzing pavement management activities. Journal of Transportation Engineering, 140, 99–104. doi:10.1061/(ASCE)TE.1943-5436.0000590.
  • Tsunokawa, K. and Schofer, J.L., 1994. Trend curve optimal control model for highway pavement maintenance: case study and evaluation. Transportation Research Part A: Policy and Practice, 28, 151–166. doi:10.1016/0965-8564(94)90035-3.
  • Wang, F., Zhang, Z., and Machemehl, R.B., 2003. Decision-making problem for managing pavement maintenance and rehabilitation projects. Transportation Research Record: Journal of the Transportation Research Board, 1853, 21–28. doi:10.3141/1853-03.
  • Wu, D., Yuan, C., and Liu, H., 2017. A risk-based optimisation for pavement preventative maintenance with probabilistic LCCA: a Chinese case. International Journal of Pavement Engineering, 18, 11–25. doi:10.1080/10298436.2015.1030743.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.