293
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Performance attenuation and mechanism of basalt-fibre-reinforced concrete under fatigue load and freeze–thaw cycles

ORCID Icon, , , &
Article: 2032700 | Received 12 Oct 2021, Accepted 18 Jan 2022, Published online: 16 Feb 2022

References

  • Ahmed, W., and Lim, C.W, 2021. Production of sustainable and structural fiber reinforced recycled aggregate concrete with improved fracture properties: a review. Journal of Cleaner Production, 279, 17. doi:10.1016/j.jclepro.2020.123832.
  • Alam, B., and Yaman, I.O, 2021. Fatigue performance of pva fibre reinforced cementitious composite overlays. International Journal of Pavement Engineering, 22 (7), 822–828. doi:10.1080/10298436.2019.1647341.
  • Alaskar, A., et al., 2021. Performance evaluation of high-strength concrete reinforced with basalt fibers exposed to elevated temperatures. Journal of Building Engineering, 35, 9. doi:10.1016/j.jobe.2020.102108.
  • Asim, M., et al., 2020. Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. Journal of Building Engineering, 31, 11. doi:10.1016/j.jobe.2020.101411.
  • Branston, J., et al., 2016. Influence of basalt fibres on free and restrained plastic shrinkage. Cement and Concrete Composites, 74, 182–190. doi:10.1016/j.cemconcomp.2016.10.004.
  • Chen, X.F., et al., 2020. Study of high tensile strength of natural continuous basalt fibers. Journal of Natural Fibers, 17 (2), 214–222. doi:10.1080/15440478.2018.1477087.
  • Cui, S.G., et al., 2018. Experimental study on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high geothermal tunnels. Construction and Building Materials, 173, 124–135. doi:10.1016/j.conbuildmat.2018.03.191.
  • Dong, Y.J., et al., 2018. Microstructural damage evolution and its effect on fracture behavior of concrete subjected to freeze-thaw cycles. International Journal of Damage Mechanics, 27 (8), 1272–1288. doi:10.1177/1056789518787025.
  • Ferella, F., et al., 2019. New scrubber for air purification: abatement of particulate matter and treatment of the resulting wastewater. International Journal of Environmental Science and Technology, 16 (3), 1677–1690. doi:10.1007/s13762-018-1826-4.
  • Girgin, Z.C, 2018. Effect of slag, nano clay and metakaolin on mechanical performance of basalt fibre cementitious composites. Construction and Building Materials, 192, 70–84. doi:10.1016/j.conbuildmat.2018.10.090.
  • Grzeszczyk, S., et al., 2020. Reactive powder concrete containing basalt fibers: strength, abrasion and porosity. Materials, 13 (13), 21. doi:10.3390/ma13132948.
  • Guo, Y.C., et al., 2018. Evolution mechanism of microscopic pores in pavement concrete under multi-field coupling. Construction and Building Materials, 173, 381–393. doi:10.1016/j.conbuildmat.2018.04.022.
  • Jalasutram, S., Sahoo, D.R., and Matsagar, V, 2017. Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete. Structural Concrete, 18 (2), 292–302. doi:10.1002/suco.201500216.
  • Jiang, C.H., et al., 2016. Effect of polypropylene and basalt fiber on the behavior of mortars for repair applications. Advances in Materials Science and Engineering, 2016, 11. doi:10.1155/2016/5927609.
  • John, V.J., and Dharmar, B, 2012. Influence of basalt fibers in the mechanical behavior of concrete-a review. Structural Concrete, 12. doi:10.1002/suco.201900086.
  • Karthikeyan, B., Subin, A., and Muthulakshmi, T, 2020. High strength concrete using ultra-fine TiO2 and basalt fiber- a study on mechanical and durability characteristics. Revista Romana De Materiale-Romanian Journal of Materials, 50 (1), 51–58.
  • Kasu, S.R., Mitra, N., and Muppireddy, A.R, 2021. Influence of polyester microfiber reinforcement on flexural fatigue characteristics of concrete. Road Materials and Pavement Design, 17. doi:10.1080/14680629.2020.1808521.
  • Khan, M.R., et al., 2021a. Efficiency of basalt fiber length and content on mechanical and microstructural properties of hybrid fiber concrete. Fatigue and Fracture of Engineering Materials and Structures, 44 (8), 2135–2152. doi:10.1111/ffe.13483.
  • Khan, M., et al., 2021b. Hybrid fiber concrete with different basalt fiber length and content. Structural Concrete, 19. doi:10.1002/suco.202000472.
  • Khan, M., Cao, M.L., and Ali, M, 2020. Cracking behaviour and constitutive modelling of hybrid fibre reinforced concrete. Journal of Building Engineering, 30, 15. doi:10.1016/j.jobe.2020.101272.
  • Li, W.J., et al., 2020a. Mechanical properties and freeze-thaw durability of basalt fiber reactive powder concrete. Applied Sciences-Basel, 10 (16), 13. doi:10.3390/app10165682.
  • Li, Y., et al., 2020b. Investigations of chloride ions permeability of pavement concrete under coupled effect of fatigue loading and hydrodynamic pressure. International Journal of Pavement Engineering, 16. doi:10.1080/10298436.2020.1819540.
  • Li, Z.N., et al., 2021. Dynamic deterioration of strength, durability, and microstructure of pavement concrete under fatigue load. Construction and Building Materials, 306. doi:10.1016/j.conbuildmat.2021.124912.
  • Li, Y., Shen, A.Q., and Wu, H, 2020c. Fractal dimension of basalt fiber reinforced concrete (BFRC) and its correlations to pore structure, strength and shrinkage. Materials, 13 (14), 24. doi:10.3390/ma13143238.
  • Liang, N.H., et al., 2021. Study on the fracture toughness of polypropylene-basalt fiber-reinforced concrete. International Journal of Concrete Structures and Materials, 15 (1), 23. doi:10.1186/s40069-021-00472-x.
  • Ma, K.L., et al., 2014. Deterioration of dynamic mechanical property of concrete with mineral admixtures under fatigue loading. Science China-Technological Sciences, 57 (10), 1909–1916. doi:10.1007/s11431-014-5632-z.
  • Ma, Q., and Zhu, Y, 2017. Experimental research on the microstructure and compressive and tensile properties of nano-sio2 concrete containing basalt fibers. Underground Space, 2 (3), 175–181. doi:10.1016/j.undsp.2017.07.001.
  • Mermerdas, K., Ipek, S., and Mahmood, Z, 2021. Visual inspection and mechanical testing of fly ash-based fibrous geopolymer composites under freeze-thaw cycles. Construction and Building Materials, 283, 15. doi:10.1016/j.conbuildmat.2021.122756.
  • Nili, M., et al., 2018. Experimental study and modeling of fiber volume effects on frost resistance of fiber reinforced concrete. International Journal of Civil Engineering, 16 (3A), 263–272. doi:10.1007/s40999-016-0122-2.
  • Pakravan, H.R., and Ozbakkaloglu, T, 2019. Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances. Construction and Building Materials, 207, 491–518. doi:10.1016/j.conbuildmat.2019.02.078.
  • Patti, A., et al., 2021. A comparative analysis on the processing aspects of basalt and glass fibers reinforced composites. Fibers and Polymers, 22 (5), 1449–1459. doi:10.1007/s12221-021-0184-x.
  • Punurai, W., et al., 2018. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Construction and Building Materials, 186, 62–70. doi:10.1016/j.conbuildmat.2018.07.115.
  • Qin, J.H., et al., 2018. Mechanical properties of basalt fiber reinforced magnesium phosphate cement composites. Construction and Building Materials, 188, 946–955. doi:10.1016/j.conbuildmat.2018.08.044.
  • Ren, J.G., and Lai, Y.M, 2021. Study on the durability and failure mechanism of concrete modified with nanoparticles and polypropylene fiber under freeze-thaw cycles and sulfate attack. Cold Regions Science and Technology, 188, 12. doi:10.1016/j.coldregions.2021.103301.
  • Sahin, F., et al., 2021. Effect of basalt fiber on metakaolin-based geopolymer mortars containing rilem, basalt and recycled waste concrete aggregates. Construction and Building Materials, 301. doi:10.1016/j.conbuildmat.2021.124113.
  • Saradar, A., et al., 2020. Prediction of mechanical properties of lightweight basalt fiber reinforced concrete containing silica fume and fly ash: Experimental and numerical assessment. Journal of Building Engineering, 32, 12. doi:10.1016/j.jobe.2020.101732.
  • Sarkar, A., and Hajihosseini, M, 2020. The effect of basalt fibre on the mechanical performance of concrete pavement. Road Materials and Pavement Design, 21 (6), 1726–1737. doi:10.1080/14680629.2018.1561379.
  • Shen, A.Q., et al., 2018. Relationship between flexural strength and pore structure of pavement concrete under fatigue loads and freeze-thaw interaction in seasonal frozen regions. Construction and Building Materials, 174, 684–692. doi:10.1016/j.conbuildmat.2018.04.165.
  • Smarzewski, P, 2019. Influence of basalt-polypropylene fibres on fracture properties of high performance concrete. Composite Structures, 209, 23–33. doi:10.1016/j.compstruct.2018.10.070.
  • Sun, M., Xin, D.B., and Zou, C.Y, 2019. Damage evolution and plasticity development of concrete materials subjected to freeze-thaw during the load process. Mechanics of Materials, 139, 13. doi:10.1016/j.mechmat.2019.103192.
  • Szelag, M, 2020. Fractal characterization of thermal cracking patterns and fracture zone in low-alkali cement matrix modified with microsilica. Cement and Concrete Composites, 114, 14. doi:10.1016/j.cemconcomp.2020.103732.
  • Vicente, M.A., et al., 2018. Influence of the pore morphology of high strength concrete on its fatigue life. International Journal of Fatigue, 112, 106–116. doi:10.1016/j.ijfatigue.2018.03.006.
  • Wang, X.Z., et al., 2019. The effects of fiber length and volume on material properties and crack resistance of basalt fiber reinforced concrete (bfrc). Advances in Materials Science and Engineering, 2019, 17. doi:10.1155/2019/7520549.
  • Wu, H.Y., Lin, X.S., and Zhou, A.N, 2020. A review of mechanical properties of fibre reinforced concrete at elevated temperatures. Cement and Concrete Research, 135, 21. doi:10.1016/j.cemconres.2020.106117.
  • Yang, Y.Y., et al., 2019. Uniaxial compression mechanical property and fracture behavior of hybrid inorganic short mineral fibers reinforced cement-based material. Cement and Concrete Composites, 104, 15. doi:10.1016/j.cemconcomp.2019.103338.
  • Yao, J.W., Chen, J.K., and Lu, C.S, 2019. Fractal cracking patterns in concretes exposed to sulfate attack. Materials, 12 (14), 16. doi:10.3390/ma12142338.
  • Zhao, Y.R., et al., 2017. Experimental study on dynamic mechanical properties of the basalt fiber reinforced concrete after the freeze-thaw based on the digital image correlation method. Construction and Building Materials, 147, 194–202. doi:10.1016/j.conbuildmat.2017.02.133.
  • Zhao, Y.R., et al., 2018. Study on bending damage and failure of basalt fiber reinforced concrete under freeze-thaw cycles. Construction and Building Materials, 163, 460–470. doi:10.1016/j.conbuildmat.2017.12.096.
  • Zhou, H., et al., 2020. Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials, 13 (6), 20. doi:10.3390/ma13061362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.