286
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Spectroscopic ellipsometry studies on optical constants of crystalline wax-doped asphalt binders

, , ORCID Icon & ORCID Icon
Article: 2042286 | Received 15 Oct 2021, Accepted 09 Feb 2022, Published online: 25 Feb 2022

References

  • Benhaliliba, M, 2021. Zno a multifunctional material: physical properties, spectroscopic ellipsometry and surface examination. Optik, 241, 167197. doi:10.1016/j.ijleo.2021.167197.
  • Chen, Z., et al., 2021. Improvement of thermal and optical responses of short-term aged thermochromic asphalt binder by warm-mix asphalt technology. Journal of Cleaner Production, 279 (1), 123675. doi:10.1016/j.jclepro.2020.123675.
  • Ding, H., et al., 2018a. Performance grading of extracted and recovered asphalt cements. Construction and Building Materials, 187, 996–1003. doi:10.1016/j.conbuildmat.2018.07.243.
  • Ding, H., et al., 2018b. Low-temperature reversible aging properties of coal liquefaction residue modified asphalt. Materials and Structures, 51 (3), 63. doi:10.1617/s11527-018-1190-3.
  • Ding, H., et al., 2021. Effects of crystalline wax and asphaltene on thermoreversible aging of asphalt binder. International Journal of Pavement Engineering, 1–10. doi:10.1080/10298436.2021.1931199.
  • Ding, H., et al., 2022. Characterisation of crystalline wax in asphalt binder by X-ray diffraction. Road Materials and Pavement Design, doi:10.1080/14680629.2021.2020682.
  • Ding, H., Qiu, Y., and Rahman, A, 2019. Low-temperature reversible aging properties of selected asphalt binders based on thermal analysis. Journal of Materials in Civil Engineering, 31 (3), 04018402-1–04018402-7. doi:10.1061/(asce)mt.1943-5533.0002625.
  • Ding, H., Qiu, Y., and Rahman, A, 2020. Influence of thermal history on the intermediate and low-temperature reversible aging properties of asphalt binders. Road Materials and Pavement Design, 21 (8), 2126–2142. doi:10.1080/14680629.2019.1593227.
  • Gaxiola, A., and Ossa, A, 2019. Hydraulic, volumetric, and mechanical approach in asphalt mixture design for impervious barriers. Journal of Materials in Civil Engineering, 31 (2), 1. doi:10.1061/(asce)mt.1943-5533.0002613.
  • Hu, J., and Yu, X. B, 2015. Spectroscopic ellipsometry measurement of spectrum-dependent refraction index of thermochromic asphalt binder. Transportation research board 94th annual meeting, 15, 3075.
  • Hu, J., and Yu, X, 2016. Reflectance spectra of thermochromic asphalt binder: characterization and optical mixing model. Journal of Materials in Civil Engineering, 28 (2), 04015121. doi:10.1061/(asce)mt.1943-5533.0001387.
  • Johs, B., and Hale, J. S., 2008. Dielectric function representation by B-splines. Physica Status Solidi a-Applications and Materials Science, 205 (4), 715–719. doi:10.1002/pssa.200777754.
  • Lagier, M., et al., 2021. Optical properties of in vacuo lithiated nanoporous WO3:Mo thin films as determined by spectroscopic ellipsometry. Optical Materials, 117, 111091. doi:10.1016/j.optmat.2021.111091.
  • Li, Q., et al., 2016. Evaluation of basic oxygen furnace (BOF) material into slag-based asphalt concrete to be used in railway substructure. Construction and Building Materials, 115, 593–601. doi:10.1016/j.conbuildmat.2016.04.085.
  • Liu, J., et al., 2017. Using the viscoelastic parameters to estimate the glass transition temperature of asphalt binders. Construction and Building Materials, 153, 908–917. doi:10.1016/j.conbuildmat.2017.07.120.
  • Ma, L., et al., 2021. Comprehensive review on the transport and reaction of oxygen and moisture towards coupled oxidative ageing and moisture damage of bitumen. Construction and Building Materials, 283 (1), 122632. doi:10.1016/j.conbuildmat.2021.122632.
  • Mainieri, J. J. G., and Al-Qadi, I. L, 2021. Ultra-violet (UV) aging for asphalt binder under controlled moisture and temperature conditions. International airfield and highway pavements conference 2021. doi:10.1061/9780784483510.002.
  • Mazumder, M., et al., 2020a. Optical characterization of asphalt binders containing wax additives. Advances in Civil Engineering, 2020, 1–7. doi:10.1155/2020/4170691.
  • Mazumder, M., et al., 2020b. Spectroscopic ellipsometry of asphalt binder: A study of optical constants. International Journal of Civil Engineering, 18 (3A), 251–259. doi:10.1007/s40999-019-00468-5.
  • Mendoza-Galván, A., et al., 2018. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films. Journal of Optics, 20 (2), 024001. doi:10.1088/2040-8986/aa9e7d.
  • Mirwald, J., et al., 2020. Impact of reactive oxygen species on bitumen aging - The viennese binder aging method. Construction and Building Materials, 257, 119495. doi:10.1016/j.conbuildmat.2020.119495.
  • Nguyen, X. A., et al., 2021. A systematic study of compositionally dependent dielectric tensors of SnSxSe1-x alloys by spectroscopic ellipsometry. Crystals, 11 (5), 548. doi:10.3390/cryst11050548.
  • Park, G., Kim, T., and Lee, Y.-W, 2021. A method for measuring the solubility of disperse Red 60 in supercritical carbon dioxide using variable-volume view cell with in-situ UV–Vis spectrometer. The Journal of Supercritical Fluids, 176, 105302. doi:10.1016/j.supflu.2021.105302.
  • Qiu, Y., et al., 2020a. Using combined Avrami-Ozawa method to evaluate low-temperature reversible aging in asphalt binders. Road Materials and Pavement Design, 21 (1), 78–93. doi:10.1080/14680629.2018.1479291.
  • Qiu, Y., Ding, H., and Su, T, 2020b. Non-isothermal low-temperature reversible aging of commercial wax-based warm mix asphalts. International Journal of Pavement Engineering, 1–9. doi:10.1080/10298436.2020.1757670.
  • Ramm, A., et al., 2016. Optical characterization of temperature-and composition-dependent microstructure in asphalt binders. Journal of Microscopy, 262 (3), 216–225. doi:10.1111/jmi.12353.
  • Savelyeva, A., et al., 2020. Study of the optical properties of asphaltenes of wax deposits of oil-water emulsions. Journal of Physics: Conference Series, 1611, 012016. doi:10.1088/1742-6596/1611/1/012016.
  • Shen, C.-C., Chou, W.-Y., and Liu, H.-L, 2014. Temperature dependence of optical properties of pentacene thin films probed by spectroscopic ellipsometry. Solid State Communications, 188, 1–4. doi:10.1016/j.ssc.2014.02.020.
  • Sun, J., and Pribil, G. K, 2017. Analyzing optical properties of thin vanadium oxide films through semiconductor-to-metal phase transition using spectroscopic ellipsometry. Applied Surface Science, 421, 819–823. doi:10.1016/j.apsusc.2016.09.125.
  • Woollam, J. A., et al., 1999. Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications. Proceedings of SPIE-The International Society for Optical Engineering, 1, 3–28.
  • Yao, H., et al., 2016. Rheological properties, low-temperature cracking resistance, and optical performance of exfoliated graphite nanoplatelets modified asphalt binder. Construction and Building Materials, 113, 988–996. doi:10.1016/j.conbuildmat.2016.03.152.
  • Yu, M., et al., 2012. Evaluation of volatile organic compounds from asphalt using UV-visible spectrometer. Advanced Materials Research, 472-475, 432–436. doi:10.4028/www.scientific.net/AMR.472-475.432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.