396
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Pavement rutting performance analysis of automated vehicles: impacts of wander mode, lane width, and market penetration rate

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2049264 | Received 02 Aug 2021, Accepted 28 Feb 2022, Published online: 13 Mar 2022

References

  • Abu Al-Rub, Rashid K, et al, 2012. Comparing finite element and constitutive modelling techniques for predicting rutting of asphalt pavements. International Journal of Pavement Engineering, 13 (4), 322–338. doi:10.1080/10298436.2011.566613.
  • Abu Al-Rub, R. K., Masad, E. A., and Huang, C.-W., 2009. Improving the sustainability of asphalt pavements through developing a predictive model with fundamental material properties. Swutc/09/476660-00007-1, 1 (2), 59.
  • Al-Qadi, I. L., et al., 2009. Creep behavior of hot-mix asphalt due to heavy vehicular tire loading. Journal of Engineering Mechanics, 135 (11), 1265–1273. doi:10.1061/(ASCE)0733-9399(2009)135:11(1265).
  • Ali, B., Sadek, M. and Shahrour, I., 2008. Elasto-viscoplastic finite element analysis of the long-term behavior of flexible pavements application to rutting. Road Materials and Pavement Design, 9 (3), 463–479. doi:10.3166/rmpd.9.463-479.
  • Amirgholy, M., Shahabi, M., and Oliver Gao, H., 2020. Traffic automation and lane management for communicant, autonomous, and human-driven vehicles. Transportation Research Part C: Emerging Technologies, 111 (November 2019), 477–495. doi:10.1016/j.trc.2019.12.009.m.
  • Arabani, M., Jamshidi, R., and Sadeghnejad, M., 2014. Using of 2D finite element modeling to predict the glasphalt mixture rutting behavior. Construction and Building Materials, 68, 183–191. doi:10.1016/j.conbuildmat.2014.06.057.
  • Binshuang, Z., et al., 2019. Skid resistance demands of asphalt pavement during the braking process of autonomous vehicles. MATEC Web of Conferences, 275, 04002. doi:10.1051/matecconf/201927504002.
  • Buiter, R., et al., 1989. Effects of transverse distribution of heavy vehicles on thickness design of full-depth asphalt pavements. Transportation Research Record, 1227, 66–74.
  • Burgers, J. M., 1935. First and second report on viscosity and plasticity. the Netherlands: Academy of Sciences at Amsterdam.
  • Chen, F., et al., 2019. Assess the impacts of different autonomous trucks’ lateral control modes on asphalt pavement performance’. Transportation Research Part C: Emerging Technologies, 103 (March), 17–29. doi:10.1016/j.trc.2019.04.001.
  • Chen, F., Balieu, R., and Kringos, N., 2016. Potential influences on long-term service performance of road infrastructure by automated vehicles. Transportation Research Record: Journal of the Transportation Research Board, 2550 (1), 72–79. doi:10.3141/2550-10.
  • Chen, F., Song, M., and Ma, X., 2020. A lateral control scheme of autonomous vehicles considering pavement sustainability. Journal of Cleaner Production, 256. doi:10.1016/j.jclepro.2020.120669.
  • Darabi, M. K., et al., 2011. A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials. International Journal of Solids and Structures, 48 (1), 191–207. doi:10.1016/j.ijsolstr.2010.09.019.
  • Erlingsson, S., 2004. Mechanistic pavement design methods – a road to better understanding of pavement performance. In: Via nordica 2004 – NRA’s 19th road congress, C8: berekraftige vegkonstruksjonar, June 2014, 1–8. Available from: https://www.researchgate.net/publication/242219834_Mechanistic_Pavement_Design_Methods_-_A_Road_to_Better_Understanding_of_Pavement_Performance
  • Fahad, M., Nagy, R., and Fuleki, P., 2021. Creep model to determine rut development by autonomous truck axles on pavement. Pollack Periodica, 1–6. doi:10.1556/606.2021.00328.
  • Fang, H., et al., 2007. An object-oriented framework for finite element pavement analysis. Advances in Engineering Software, 38 (11–12), 763–771. doi:10.1016/j.advengsoft.2006.08.045.
  • Gungor, O. E., et al., 2016. In-situ validation of three-dimensional pavement finite element models. In: The roles of accelerated pavement testing in pavement sustainability: engineering, environment, and economics. doi:10.1007/978-3-319-42797-3_10.
  • Gungor, O. E. and Al-Qadi, I. L., 2020a. All for one: centralized optimization of truck platoons to improve roadway infrastructure sustainability. Transportation Research Part C: Emerging Technologies, 114, 84–98. doi:10.1016/j.trc.2020.02.002.
  • Gungor, O. E. and Al-Qadi, I. L., 2020b. Wander 2D: a flexible pavement design framework for autonomous and connected trucks. International Journal of Pavement Engineering, 1–16. doi:10.1080/10298436.2020.1735636.
  • Hadi Nahi, M., et al., 2014. Finite element model for rutting prediction in asphalt mixes in various air void contents. Journal of Applied Sciences, 14 (21), 2730–2737. doi:10.3923/jas.2014.2730.2737.
  • Hua, J., 1998. Finite element modeling and analysis of accelerated pavement testing device and rutting phenomenon. PhD thesis, Purdue University, West Lafayette
  • Hua, J. and White, T., 2002. A study of nonlinear tire contact pressure effects on HMA rutting. The International Journal of Geomechanics, 2 (May 2001), 45. doi:10.1061/(ASCE)1532-3641(2002)2.
  • Huang, H., 1995. Analysis of accelerated pavement tests and finite element modeling of rutting phenomenon, PhD thesis, Purdue University, West Lafayette.
  • Huang, C. W., et al., 2007. Nonlinearly viscoelastic analysis of asphalt mixes subjected to shear loading. Mechanics of Time-Dependent Materials, 11 (2), 91–110. doi:10.1007/s11043-007-9034-5.
  • Huang, C.-W., et al., 2011. Three-Dimensional simulations of asphalt pavement permanent deformation using a nonlinear viscoelastic and viscoplastic model. Journal of Materials in Civil Engineering. doi:10.1061/(asce)mt.1943-5533.0000022.
  • Liu, Z. and Song, Z., 2019. Strategic planning of dedicated autonomous vehicle lanes and autonomous vehicle/toll lanes in transportation networks. Transportation Research Part C: Emerging Technologies, 106 (March), 381–403. doi:10.1016/j.trc.2019.07.022.
  • Lu, Y. and Wright, P. J., 1998. Numerical approach of visco-elastoplastic analysis for asphalt mixtures. Computers & Structures, 69 (2), 139–147. doi:10.1016/S0045-7949(98)00139-4.
  • Masad, E., et al., 2009. Characterization of asphalt binder resistance to permanent deformation based on nonlinear viscoelastic analysis of Multiple Stress Creep Recovery (MSCR) Test.
  • Masad, E., Dessouky, S., and Little, D., 2007. Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt. International Journal of Geomechanics, 7 (2), 119–130. doi:10.1061/(asce)1532-3641(2007)7:2(119).
  • Maxwell, J. C., 1867. IV. On the dynamical theory of gases’, Philosophical Transactions of the Royal Society of London. 157, pp. 49–88. Available from: http://www.jstor.org/stable/108968
  • McCullah, J. and Gray, D., 2005. Cooperative Highway Program.
  • Mohajerpoor, R. and Ramezani, M., 2019. Mixed flow of autonomous and human-driven vehicles: analytical headway modeling and optimal lane management. Transportation Research Part C: Emerging Technologies, 109, 194–210. doi:10.1016/j.trc.2019.10.009.
  • Nguyen, V. B., et al., 2020. Creep behavior and rutting resistance of asphalt pavements by experimental testing and finite element modelling. In: C. Ha-Minh, D. Van Dao, F. Benboudjema, S. Derrible, D. V. Khoa Huynh, A. M. Tang, eds. Cigos 2019, innovation for sustainable infrastructure. Singapore: Springer Singapore, 621–626.
  • Noorvand, H. and Underwood, B. S., 2017. Autonomous vehicles. Transportation Research Record: Journal of the Transportation Research Board, 2640, 21–28. doi:10.3141/2640-03.
  • Olsson, J., Zeng, L., and Wiberg, N. E., 2000. Finite element analysis of road rutting. In: European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, 11–14.
  • Perl, M., Uzan, J., and Sides, A., 1983. Visco-elasto-plastic consititutive law for a bituminous mixture under repeated loading. Transportation Research Record, 47 (I), 20–27.
  • Perzyna, P., 1971. Thermodynamic theory of viscoplasticity. Advances in Applied Mechanics, 11 (C), 313–354. doi:10.1016/S0065-2156(08)70345-4.
  • Rana, M. M. and Hossain, K., 2021. Simulation of autonomous truck for minimizing asphalt pavement distresses. Road Materials and Pavement Design, 1–21. doi:10.1080/14680629.2021.1883469.
  • Razmi Rad, S., et al., 2020. Design and operation of dedicated lanes for connected and automated vehicles on motorways: A conceptual framework and research agenda. Transportation Research Part C: Emerging Technologies, 117 (October 2019), 102664. doi:10.1016/j.trc.2020.102664.
  • Saevarsdottir, T. and Erlingsson, S., 2015. Modelling of responses and rutting profile of a flexible pavement structure in a heavy vehicle simulator test. Road Materials and Pavement Design, 0629. doi:10.1080/14680629.2014.939698.
  • Schapery, R. A., 1969. On the characterization of nonlinear viscoelastic materials. Polymer Engineering and Science, 9 (4), 295–310. doi:10.1002/pen.760090410.
  • Seibi, A. C., et al., 2001. Constitutive relations for asphalt concrete under high rates of loading. Transportation Research Record: Journal of the Transportation Research Board, 1767, 111–119. doi:10.3141/1767-14.
  • Siddharthan, R. V., et al., 2017. Investigation of impact of wheel wander on pavement performance. Road Materials and Pavement Design, 18 (2), 390–407. doi:10.1080/14680629.2016.1162730.
  • Smith, M., 2009. ABAQUS/Standard user’s manual, Version 6.9. Dassault Systèmes Simulia Corp, Providence, RI.
  • Song, M., Chen, F., and Ma, X., 2021. Organization of autonomous truck platoon considering energy saving and pavement fatigue. Transportation Research Part D: Transport and Environment, 90 (December 2020), 102667. doi:10.1016/j.trd.2020.102667.
  • Timm, D. and Priest, A., 2005. Measurement of wheel wander under live traffic conditions. In: 7th international conference on the Bearing Capacity of Roads, Railways and Airfields (BCRA’05).
  • Voigt, W., 1892. Ueber innere Reibung fester Körper, insbesondere der Metalle. Annalen der Physik und Chemie, 283, 671–693.
  • Wang, Y., et al., 2017. Finite element analysis for rutting prediction of asphalt concrete pavement under moving wheel load. International Journal of Simulation Modelling, 16 (2), 229–240. doi:10.2507/IJSIMM16(2)4.374.
  • White, T. D., et al., 2002. Contributions of pavement structural layers to rutting of hot mix asphalt pavements, NCHRP Report 468. Transportation Research Board and American Association of State Highway and Transportation Officials.
  • Yeganeh, A., Vandoren, B., and Pirdavani, A., 2021a. Impacts of load distribution and lane width on pavement rutting performance for automated Vehicles. International Journal of Pavement Engineering. doi:10.1080/10298436.2021.1935938.
  • Yeganeh, A., Vandoren, B., and Pirdavani, A., 2021b. The effects of automated vehicles deployment on pavement rutting performance. Airfield and Highway Pavements, 280–292. doi:10.1061/9780784483503.028.
  • Zhou, F., et al., 2019. Optimization of lateral wandering of automated vehicles to reduce hydroplaning potential and to improve pavement life. Transportation Research Record, 1–9. doi:10.1177/0361198119853560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.