211
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Factors affecting low-temperature cracking of asphalt pavements: analysis of field observations using the ordered logistic model

ORCID Icon, ORCID Icon, ORCID Icon, &
Article: 2065273 | Received 04 Oct 2021, Accepted 07 Apr 2022, Published online: 26 Apr 2022

References

  • Anderson, K.O., et al., 1998. Temperature and thermal contraction measurements as related to the development of low temperature cracking on the Lamont test road. Canadian Technical Asphalt Association Proceedings, 43, 16–46.
  • Baglieri, O., et al., 2021. A novel methodology for the evaluation of low temperature failure properties of asphalt binders. Materials and Structures/Materiaux Et Constructions, 54 (1). doi:10.1617/s11527-020-01610-9.
  • Bańkowski, W, 2018. Analysis of fatigue life of asphalt concretes considering different types of mixtures and binders. Roads and Bridges - Drogi i Mosty, 17 (4), 253–280. doi:10.7409/rabdim.018.016.
  • Chen, Y., et al., 2020. High modulus asphalt concrete: A state-of-the-art review. Construction and Building Materials, 237, 117653. doi:10.1016/j.conbuildmat.2019.117653.
  • Corté, J. F, 2001. Development and uses of hard-grade asphalt and of high-modulus asphalt mixes in France. Transportation Research Circular, 503, 12–31.
  • Cox, D.R, 1958. The regression analysis of binary sequences (with discussion). Journal of the Royal Statistical Society, Series B (Methodological), XX (2), 215–242.
  • Dong, S., et al., 2018. Mining multiple association rules in LTPP database: An analysis of asphalt pavement thermal cracking distress. Construction and Building Materials, 191, 837–852. ISSN 0950-0618. doi:10.1016/j.conbuildmat.2018.09.162.
  • Fagerland, M.W., and Hosmer, D.W, 2017. How to test for goodness of fit in ordinal logistic regression models. The Stata Journal, 17 (3), 668–686. doi:10.1177/1536867X1701700308.
  • FHWA, 1998. LTPP data analysis: improved low pavement temperature prediction. Federal Highway Administration, Report No. FHWA-RD-97-104.
  • Gajewski, M., Bańkowski, W., and Pronk, A.C, 2020. Evaluation of fatigue life of high modulus asphalt concrete with use of three different definitions. International Journal of Pavement Engineering, 21 (14), 1717–1728. doi:10.1080/10298436.2018.1564302.
  • GDDKiA, 2014. Nawierzchnie asfaltowe na drogach krajowych WT-2 2014 - część I - Mieszanki mineralno-asfaltowe, Wymagania techniczne (in Polish).
  • Gelman, A., and Hill, J., 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press. ISBN: 9780521686891.
  • Judycki, J., et al., 2015. Investigation of low-temperature cracking in newly constructed high-modulus asphalt concrete base course of a motorway pavement. Road Materials and Pavement Design, Special Issue: EATA 2015, 16 (supp1), 362–388. doi:10.1080/14680629.2015.1029674.
  • Judycki, J., et al., 2016. The impact of homogeneity of high modulus asphalt concrete layer on low-temperature cracking. 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements, 13, V, 319-326. doi:10.1007/978-94-024-0867-6_45.
  • Judycki, J, 2018. Verification of the new viscoelastic method of thermal stress calculation in asphalt layers of pavements. International Journal of Pavement Engineering, 19, 725–737. doi:10.1080/10298436.2016.1199883.
  • Judycki, J, 2020. Application of the new viscoelastic method of thermal stress calculation to the analysis of low-temperature cracking of asphalt layers. Roads and Bridges - Drogi i Mosty, 19 (1), 27–49. doi:10.7409/rabdim.020.002.
  • Jung, D.H., and Vinson, T.S, 1994. Low-temperature cracking: test sections, strategic highway research program, SHRP-A-400, ISBN: 0309058074.
  • Lee, H. J., Lee, J. H., and Park, H. M, 2007. Performance evaluation of high modulus asphalt mixtures for long life asphalt pavements. Construction and Building Materials, 21, 1079–1087. doi:10.1016/j.conbuildmat.2006.01.003.
  • Marasteanu, M., et al., 2007. Investigation of low temperature cracking in asphalt pavements national pooled fund study 776, Minnesota Department of Transportation.
  • Mateos, A., et al., 2015. Application of the logit model for the analysis of asphalt fatigue tests results. Construction and Building Materials, 82, 53–60. doi:10.1016/j.conbuildmat.2015.02.029.
  • Moreno-Navarro, F., et al., 2016. High-modulus asphalt mixtures modified with acrylic fibers for their use in pavements under severe climate conditions. Journal of Cold Regions Engineering, 30 (4), 04016003.
  • Ouyang, W., Fan, X., and Wang, L, 2009. Research on anti-rutting performance of high modulus asphalt concrete pavement. Journal of Highway and Transportation Research and Development, 4 (2), 77–79.
  • Pszczola, M., Rys, D., and Jaczewski, M, 2022. Field evaluation of high modulus asphalt concrete resistance to low-temperature cracking. Materials, 15 (1), 369. doi:10.3390/ma15010369.
  • Pszczola, M., Rys, D., and Jaskula, P, 2017. Analysis of climatic zones in Poland with regard to asphalt performance grading. Roads and Bridges - Drogi i Mosty, 16 (4), 245–269. doi:10.7409/rabdim.017.016.
  • Ryś, D., et al., 2017. Comparison of low-temperature cracks intensity on pavements with high modulus asphalt concrete and conventional asphalt concrete bases. Construction and Building Materials, 147, 478–487. doi:10.1016/j.conbuildmat.2017.04.179.
  • Rys, D., et al., 2020. Effect of bitumen characteristics obtained according to EN and Superpave specifications on asphalt mixture performance in low-temperature laboratory tests. Construction and Building Materials, 231, 117156. doi:10.1016/j.conbuildmat.2019.117156.
  • Tabatabaee, H.A., Velasquez, R., and Bahia, H.U, 2012. Modeling thermal stress in asphalt mixtures undergoing glass transition and physical hardening. Transporatation Research Record: Journal of the Transporatation Reserach Board, 2296, 106–114. doi:10.3141/2296-11.
  • Velasquez, R., and Bahia, H, 2013. Critical factors affecting thermal cracking of asphalt pavements: towards a comprehensive specification. Road Materials and Pavement Design, 14 (sup1), 187–200. doi:10.1080/14680629.2013.774755.
  • Yang, G., and Wang, X, 2020. Rationality of applying high-modulus asphalt concrete in long-life asphalt pacement with semi-rigid base. Journal of Highway and Transportation Research and Development, 14 (2), 16–24.
  • Yee, P., et al., 2006. Analysis of premature low-temperature cracking in three Ontario, Canada. Transporatation Research Record: Journal of the Transporatation Reserach Board, 1962, 44–51.
  • Zaumanis, M., Arraigada, M., and Poulikakos, L.D, 2020. 100% recycled high-modulus asphalt concrete mixture design and validation using vehicle simulator. Construction and Building Materials, 260, 119891. doi:10.1016/j.conbuildmat.2020.119891.
  • Zhu, J., et al., 2021. Mechanical properties of high-modulus asphalt concrete containing recycled asphalt pavement: a parametric study. Journal of Materials in Civil Engineering, 33 (5), 04021056.
  • Zofka, A., and Braham, A, 2009. Comparison of low-temperature field performance and laboratory testing of 10 test sections in the Midwestern United States. Transporatation Research Record: Journal of the Transporatation Reserach Board, 2127, 107–114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.