503
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Property transitions of neat and styrene–butadiene-styrene (SBS)-modified asphalt binders from small, medium to large-amplitude oscillatory shears

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2068548 | Received 08 Oct 2021, Accepted 15 Apr 2022, Published online: 10 May 2022

References

  • Airey, G.D., Rahimzadeh, B., and Collop, A.C, 2002. Linear viscoelastic limits of bituminous binders. Asphalt Paving Technology, 71, 89–115.
  • Anderson, D.A, et al., 1994. Binder characterization and evaluation, volume 3: Physical characterization. Washington, DC: Strategic Highway Research Program, National Research Council.
  • Chen, M., et al., 2021. A review of phase structure of SBS modified asphalt: affecting factors, analytical methods, phase models and improvements. Construction and Building Materials, 294, 123610. doi:10.1016/j.conbuildmat.2021.123610.
  • Cheng, H., et al., 2020. Critical position of fatigue damage within asphalt pavement considering temperature and strain distribution. International Journal of Pavement Engineering, 1–12. doi:10.1080/10298436.2020.1724288.
  • Cheng, H., et al., 2021. Relationships between asphalt-layer moduli under vehicular loading and FWD loading. Journal of Materials in Civil Engineering, 33 (1), 04020437. doi:10.1061/(ASCE)MT.1943-5533.0003429.
  • Cheung, C.Y., and Cebon, D, 1997. Experimental study of pure bitumens in tension, compression, and shear. Journal of Rheology, 41 (1), 45–74. doi:10.1122/1.550858.
  • D'angelo, J.A, 2009. The relationship of the MSCR test to rutting. Road Materials and Pavement Design, 10 (sup1), 61–80. doi:10.1080/14680629.2009.9690236.
  • Diab, A., et al., 2020a. Modeling shear stress response of bituminous materials under small and large strains. Construction and Building Materials, 252, 119133. doi:10.1016/j.conbuildmat.2020.119133.
  • Diab, A., et al., 2020b. Investigating the mechanisms of rubber, styrene-butadiene-styrene and ethylene-vinyl acetate in asphalt binder based on rheological and distress-related tests. Construction and Building Materials, 262, 120744. doi:10.1016/j.conbuildmat.2020.120744.
  • Diab, A., and You, Z, 2017. Small and large strain rheological characterizations of polymer- and crumb rubber-modified asphalt binders. Construction and Building Materials, 144, 168–177. doi:10.1016/j.conbuildmat.2017.03.175.
  • Du, Y., et al., 2018. A review on solutions for improving rutting resistance of asphalt pavement and test methods. Construction and Building Materials, 168, 893–905. doi:10.1016/j.conbuildmat.2018.02.151.
  • Ewoldt, R.H., Hosoi, A.E., and Mckinley, G.H, 2008. New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology, 52 (6), 1427–1458. doi:10.1122/1.2970095.
  • González, E., et al., 2016. Rheological characterization of EVA and HDPE polymer modified bitumens under large deformation at 20°C. Construction and Building Materials, 112, 756–764. doi:10.1016/j.conbuildmat.2016.02.192.
  • Gulzar, S., and Underwood, B.S, 2020. Nonlinear viscoelastic response of crumb rubber modified asphalt binder under large strains. Transportation Research Record: Journal of the Transportation Research Board, 2674 (3), 139–149. doi:10.1177/0361198120907097.
  • Hao, G., and Wang, Y, 2021. 3D reconstruction of polymer phase in polymer-modified asphalt using confocal fluorescence microscopy. Journal of Materials in Civil Engineering, 33 (1), 04020400. doi:10.1061/(ASCE)MT.1943-5533.0003485.
  • Hyun, K., et al., 2006. Degree of branching of polypropylene measured from Fourier-transform rheology. Rheologica Acta, 46 (1), 123–129. doi:10.1007/s00397-006-0098-y.
  • Hyun, K., et al., 2007. Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts. Journal of Rheology, 51 (6), 1319–1342. doi:10.1122/1.2790072.
  • Hyun, K., et al., 2011. A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science, 36 (12), 1697–1753. doi:10.1016/j.progpolymsci.2011.02.002.
  • Liang, R., et al., 2020. Nonlinear rheological behaviors of epoxy asphalt binder compared to base asphalt binder and SBS modified asphalt binder at above ambient temperatures. Construction and Building Materials, 250, 118755. doi:10.1016/j.conbuildmat.2020.118755.
  • Ma, J., et al., 2021. Application of gel permeation chromatography technology in asphalt materials: A review. Construction and Building Materials, 278, 122386. doi:10.1016/j.conbuildmat.2021.122386.
  • Masad, E., et al., 2001. Modeling and experimental measurements of strain distribution in asphalt mixes. Journal of Transportation Engineering, 127 (6), 477–485. doi:10.1061/(ASCE)0733-947X(2001)127:6(477).
  • Moriyoshi, A., et al., 2013. Strain distribution in asphalt mixtures during the wheel tracking test at high temperatures. Construction and Building Materials, 40, 1128–1135. doi:10.1016/j.conbuildmat.2012.11.040.
  • Padmarekha, A., et al., 2013. Large amplitude oscillatory shear of unmodified and modified bitumen. Road Materials and Pavement Design, 14 (sup1), 12–24. doi:10.1080/14680629.2013.774743.
  • Qurashi, I.A., and Swamy, A.K, 2018. Viscoelastic properties of recycled asphalt binder containing waste engine oil. Journal of Cleaner Production, 182, 992–1000. doi:10.1016/j.jclepro.2018.01.237.
  • Riccardi, C., et al., 2016. Rheological modeling of asphalt binder and asphalt mortar containing recycled asphalt material. Materials and Structures, 49 (10), 4167–4183. doi:10.1617/s11527-015-0779-z.
  • Riccardi, C., et al., 2018. Development of simple relationship between asphalt binder and mastic based on rheological tests. Road Materials and Pavement Design, 19 (1), 18–35. doi:10.1080/14680629.2016.1230514.
  • Saboo, N., Sukhija, M., and Chaudhary, M, 2020. Relating asphalt binders response to LAS and LAOS tests at intermediate temperatures. Mechanics of Time-Dependent Materials, 1–15. doi:10.1007/s11043-020-09462-0.
  • Shan, L., et al., 2018. Nonlinear rheological behavior of bitumen under LAOS stress. Journal of Rheology, 62 (4), 975–989. doi:10.1122/1.5018516.
  • Shan, L., et al., 2020. Effect of styrene-butadiene-styrene (SBS) on the rheological behavior of asphalt binders. Construction and Building Materials, 231, 117076. doi:10.1016/j.conbuildmat.2019.117076.
  • Singh, B., and Kumar, P, 2020. Viscoelastic and morphological evaluation of aged polymer modified asphalt binders. International Journal of Civil Engineering, 18, 1077–1096. doi:10.1007/s40999-020-00517-4.
  • Singh, P., and Swamy, A.K, 2019. Effect of aging level on viscoelastic properties of asphalt binder containing waste polyethylene. International Journal of Sustainable Engineering, 12 (2), 141–148. doi:10.1080/19397038.2018.1474398.
  • Sun, D., and Lu, W, 2006. Phase morphology of polymer modified road asphalt. Petroleum Science and Technology, 24 (7), 839–849. doi:10.1081/LFT-200043780.
  • Sun, Y., Wang, W., and Chen, J, 2019. Investigating impacts of warm-mix asphalt technologies and high reclaimed asphalt pavement binder content on rutting and fatigue performance of asphalt binder through MSCR and LAS tests. Journal of Cleaner Production, 219, 879–893. doi:10.1016/j.jclepro.2019.02.131.
  • Tian, Y., et al., 2021. Comparative investigation on three laboratory testing methods for short-term aging of asphalt binder. Construction and Building Materials, 266, 121204. doi:10.1016/j.conbuildmat.2020.121204.
  • Wang, P., et al., 2017. Anti-ageing properties of styrene-butadiene-styrene copolymer-modified asphalt combined with multi-walled carbon nanotubes. Road Materials and Pavement Design, 18 (3), 533–549. doi:10.1080/14680629.2016.1181561.
  • Xing, C., et al., 2020. Strain field distribution of asphalt mortar using digital image processing. Construction and Building Materials, 238, 117624. doi:10.1016/j.conbuildmat.2019.117624.
  • Yan, C., et al., 2019. Influence of polymer and sulphur dosages on attenuated total reflection Fourier transform infrared upon styrene-butadiene-styrene-modified asphalt. Road Materials and Pavement Design, 20 (7), 1586–1600. doi:10.1080/14680629.2018.1467336.
  • Yan, C., et al., 2020. Characterizing the SBS polymer degradation within high content polymer modified asphalt using ATR-FTIR. Construction and Building Materials, 233, 117708. doi:10.1016/j.conbuildmat.2019.117708.
  • Zhang, F., Yu, J., and Han, J, 2011. Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS- and SBS/sulfur-modified asphalts. Construction and Building Materials, 25 (1), 129–137. doi:10.1016/j.conbuildmat.2010.06.048.
  • Zhu, X., et al., 2020. Rutting and fatigue performance evaluation of warm mix asphalt mastic containing high percentage of artificial RAP binder. Construction and Building Materials, 240, 117860. doi:10.1016/j.conbuildmat.2019.117860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.