1,150
Views
35
CrossRef citations to date
0
Altmetric
Research Article

A multi-objective optimization based on genetic algorithms for the sustainable design of Warm Mix Asphalt (WMA)

, &
Article: 2074417 | Received 25 Jan 2022, Accepted 30 Apr 2022, Published online: 20 May 2022

REFERENCES

  • Abed, A., Thom, N., & Grenfell, J. (2019). A novel approach for rational determination of warm mix asphalt production temperatures. Construction and Building Materials, 200, 80–93. https://doi.org/10.1016/j.conbuildmat.2018.12.082
  • Abudinen, D., Fuentes, L. G., & Carvajal, J. (2017). Travel quality assessment of urban roads based on international roughness index: Case study in Colombia. Transportation Research Record, 2612, 1–10. https://doi.org/10.3141/2612-01
  • Alaloul, W. S., Altaf, M., Musarat, M. A., Javed, M. F., & Mosavi, A. (2021). Systematic review of life cycle assessment and life cycle cost analysis for pavement and a case study. Sustainability, 13(4377), 1–38. https://doi.org/10.3390/su13084377
  • Albayati, A., Wang, Y., Wang, Y., & Haynes, J. (2018). A sustainable pavement concrete using warm mix asphalt and hydrated lime treated recycled concrete aggregates. Sustainable Materials and Technologies, 18, e00081, 1-12. https://doi.org/10.1016/j.susmat.2018.e00081
  • Anthonissen, J., Braet, J., & Van den bergh, W. (2015). Life cycle assessment of bituminous pavements produced at various temperatures in the Belgium context. Transportation Research Part D: Transport and Environment, 41, 306–317. https://doi.org/10.1016/j.trd.2015.10.011
  • Aurangzeb, Q., Al-Qadi, I. L., Ozer, H., & Yang, R. (2014). Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resources, Conservation and Recycling, 83, 77–86. https://doi.org/10.1016/j.resconrec.2013.12.004
  • Azarhoosh, A., & Pouresmaeil, S. (2020). Prediction of Marshall mix design parameters in flexible pavements using genetic programming. Arabian Journal for Science and Engineering, 45(10), 8427–8441. https://doi.org/10.1007/s13369-020-04776-0
  • Babaizadeh, H., Haghighi, N., Asadi, S., Broun, R., & Riley, D. (2015). Life cycle assessment of exterior window shadings in residential buildings in different climate zones. Building and Environment, 90, 168–177. https://doi.org/10.1016/j.buildenv.2015.03.038
  • Bakheit, I., & Xiaoming, H. (2019). Modification of the dry method for mixing crumb rubber modifier with aggregate and asphalt based on the binder mix design. Construction and Building Materials, 220, 278–284. https://doi.org/10.1016/j.conbuildmat.2019.06.050
  • Basu, P. (2010). Chapter 1: Introduction. In Academic Press (Ed.). In Biomass Gasification and Pyrolysis: Practical Design and Theory (pp. 1–25). https://doi.org/10.1016/B978-0-12-374988-8.00001-5
  • Behnood, A. (2020). A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. Journal of Cleaner Production, 259, 120817, 1-13. https://doi.org/10.1016/j.jclepro.2020.120817
  • Bian, C., Qian, C., Tang, K., & Yu, Y. (2020). Running time analysis of the (1+1)-EA for robust linear optimization. Theoretical Computer Science, 843, 57–72. https://doi.org/10.1016/j.tcs.2020.07.001
  • Blankendaal, T., Schuur, P., & Voordijk, H. (2014). Reducing the environmental impact of concrete and asphalt: A scenario approach. Journal of Cleaner Production, 66, 27–36. https://doi.org/10.1016/j.jclepro.2013.10.012
  • Boulay, A. M., Motoshita, M., Pfister, S., Bulle, C., Muñoz, I., Franceschini, H., & Margni, M. (2015). Analysis of water use impact assessment methods (part A): evaluation of modeling choices based on a quantitative comparison of scarcity and human health indicators. International Journal of Life Cycle Assessment, 20(1), 139–160. https://doi.org/10.1007/s11367-014-0814-2
  • Bradley, R., Jawahir, I. S., Badurdeen, F., & Rouch, K. (2018). A total life cycle cost model (TLCCM) for the circular economy and its application to post-recovery resource allocation. Resources, Conservation and Recycling, 135, 141–149. https://doi.org/10.1016/j.resconrec.2018.01.017
  • Bressi, S., Santos, J., Giunta, M., Pistonesi, L., & Presti Lo, D. (2018a). A comparative life-cycle assessment of asphalt mixtures for railway sub-ballast containing alternative materials. Resources, Conservation and Recycling, 137, 76–88. https://doi.org/10.1016/j.resconrec.2018.05.028
  • Bressi, S., Santos, J., & Losa, M. (2021). Optimization of maintenance strategies for railway track-bed considering probabilistic degradation models and different reliability levels. Reliability Engineering and System Safety, 207, 107359, 1-17. https://doi.org/10.1016/j.ress.2020.107359
  • Bryce, J., Brodie, S., Parry, T., & Lo Presti, D. (2017). A systematic assessment of road pavement sustainability through a review of rating tools. Resources, Conservation and Recycling, 120, 108–118. https://doi.org/10.1016/j.resconrec.2016.11.002
  • Calabi-Floody, A. T., Valdés-Vidal, G. A., Sanchez-Alonso, E., & Mardones-Parra, L. A. (2020). Evaluation of gas emissions, energy consumption and production costs of Warm Mix Asphalt (WMA) involving natural zeolite and Reclaimed Asphalt Pavement (RAP). Sustainability, 12, 6410, 1-16. https://doi.org/10.3390/su12166410
  • Calado, E. A., Leite, M., & Silva, A. (2019). Integrating life cycle assessment (LCA) and life cycle costing (LCC) in the early phases of aircraft structural design: an elevator case study. International Journal of Life Cycle Assessment, 24(12), 2091–2110. https://doi.org/10.1007/s11367-019-01632-8
  • Cao, R., Leng, Z., Yu, H., & Hsu, S. C. (2019). Comparative life cycle assessment of warm mix technologies in asphalt rubber pavements with uncertainty analysis. Resources, Conservation and Recycling, 147, 137–144. https://doi.org/10.1016/j.resconrec.2019.04.031
  • Capitão, S. D., Picado-Santos, L. G., & Martinho, F. (2012). Pavement engineering materials: Review on the use of warm-mix asphalt. Construction and Building Materials, 36, 1016–1024. https://doi.org/10.1016/j.conbuildmat.2012.06.038
  • Cassiani, J., Dugarte, M., & Martinez-Arguelles, G. (2021). Evaluation of the chemical index model for predicting supplementary cementitious material dosage to prevent the alkali-silica reaction in concrete. Construction and Building Materials, 275, 122158, 1-12. https://doi.org/10.1016/j.conbuildmat.2020.122158
  • Chen, Y., Xu, J., Wang, J., & Lund, P. D. (2021). Exergo-environmental cost optimization of a combined cooling, heating and power system using the emergy concept and equivalent emissions as ecological boundary. Energy, 233, 121124, 1-13. https://doi.org/10.1016/j.energy.2021.121124
  • Chen, X., & Wang, H. (2018). Life cycle assessment of asphalt pavement recycling for greenhouse gas emission with temporal aspect. Journal of Cleaner Production, 187, 148–157. https://doi.org/10.1016/j.jclepro.2018.03.207
  • Cheraghian, G., Cannone Falchetto, A., You, Z., Chen, S., Kim, Y. S., Westerhoff, J., Moon, K. H., & Wistuba, M. P. (2020). Warm mix asphalt technology: An up to date review. Journal of Cleaner Production, 268, 122128, 1-17. https://doi.org/10.1016/j.jclepro.2020.122128
  • Chohan, J. S., Mittal, N., Kumar, R., Singh, S., Sharma, S., Dwivedi, S. P., Saxena, A., Chattopadhyaya, S., Ilyas, R. A., Le, C. H., & Wojciechowski, S. (2021). Optimization of FFF Process Parameters by Naked Mole-Rat Algorithms with Enhanced Exploration and Exploitation Capabilities. Polymers, 13(1702), 1–18. https://doi.org/10.3390/polym13111702
  • Chopra, T., Parida, M., Kwatra, N., & Chopra, P. (2018). Development of pavement distress deterioration prediction models for urban road network using genetic programming. Advances in Civil Engineering, 1253108, 1–15. https://doi.org/10.1155/2018/1253108
  • Cibulski, L., Mitterhofer, H., May, T., & Kohlhammer, J., 2020). PAVED: Pareto Front Visualization for Engineering Design. Eurographics Conference on Visualization (EuroVis), 39(3), 405–416. https://doi.org/10.1111/cgf.13990.
  • Copeland, A. (2011). Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice. Federal Highway Administration, FHWA-HRT-11-021, 1–49.
  • Coulombel, N., Dablanc, L., Gardrat, M., & Koning, M. (2018). The environmental social cost of urban road freight: Evidence from the Paris region. Transportation Research Part D: Transport and Environment, 63, 514–532. https://doi.org/10.1016/j.trd.2018.06.002
  • Crepinsek, M., Liu, S.-H., & Mernik, M. (2013). Exploration and Exploitation in Evolutionary Algorithms: A Survey. ACM Computing Surveys, 45(3), 1–33. https://doi.org/10.1145/2480741.2480752
  • Curran, M. A., Overly, J. G., Hofstetter, P., Muller, R., & Lippiatt, B. C. (2002). BEES 2.0: Building for Environmental and Economic Sustainability. National Institute of Standards and Technology, NISTIR 6865, 1–38.
  • D’Angelo, J., Harm, E., Bartoszek, J., Baumgardner, G., Corrigan, M., Cowsert, J., Harman, T., Jamshidi, M., Jones, W., Newcomb, D., Prowell, B., Sines, R., & Yeaton, B. (2008). Warm-Mix Asphalt: European Practice. In Federal Highway Administration. FHWA-PL-08-007, 1–57.
  • de Bruyn, S., Bijleveld, M., de Graaff, L., Schep, E., Schroten, A., Vergeer, R., & Ahdour, S. (2018). Environmental Prices Handbook. Committed to the Environment Delft, 18.7N54.12, 9–15.
  • Del Ser, J., Osaba, E., Molina, D., Yang, X. S., Salcedo-Sanz, S., Camacho, D., Das, S., Suganthan, P. N., Coello Coello, C. A., & Herrera, F. (2019). Bio-inspired computation: Where we stand and what’s next. Swarm and Evolutionary Computation, 48, 220–250. https://doi.org/10.1016/j.swevo.2019.04.008
  • Diab, A., Sangiorgi, C., Ghabchi, R., Zaman, M., & Wahaballa, A. (2016). Warm Mix Asphalt (WMA) technologies: Benefits and drawbacks - a literature review. Proceedings of the 4th Chinese-European Workshop on Functional Pavement Design, CEW 2016, 1145–1154. https://doi.org/10.1201/9781315643274-127
  • Di Maria, A., Eyckmans, J., & Van Acker, K. (2018). Downcycling versus recycling of construction and demolition waste: Combining LCA and LCC to support sustainable policy making. Waste Management, 75, 3–21. https://doi.org/10.1016/j.wasman.2018.01.028
  • Di Maria, F., & Lasagni, M. (2017). On line measurement of the lower heating value of waste and energetic efficiency of an existing waste to energy plant: Identification of uncertainty associated to probes and their influence on the results. Energy Procedia, 126(201709), 613–620. https://doi.org/10.1016/j.egypro.2017.08.235
  • Ding, R., Dong, H. bin, Yin, G. sheng, Sun, J., Yu, X. dong, & Feng, X. bin (2021). An objective reduction method based on advanced clustering for many-objective optimization problems and its human-computer interaction visualization of pareto front. Computers and Electrical Engineering, 93, 107266, 1-14. https://doi.org/10.1016/j.compeleceng.2021.107266
  • Ding, Y., Wu, J., Xu, P., Zhang, X., & Fan, Y. (2021). Treatment methods for the quality improvement of Recycled Concrete Aggregate (RCA) - A review. Journal of Wuhan University of Technology, 36(1), 77–92. https://doi.org/10.1007/s11595-021-2380-3
  • Doan, T., & Kalita, J. (2017). Predicting run time of classification algorithms using meta-learning. International Journal of Machine Learning and Cybernetics, 8(6), 1929–1943. https://doi.org/10.1007/s13042-016-0571-6
  • Du, C., Dias, L. C., & Freire, F. (2019). Robust multi-criteria weighting in comparative LCA and S-LCA: A case study of sugarcane production in Brazil. Journal of Cleaner Production, 218, 708–717. https://doi.org/10.1016/j.jclepro.2019.02.035
  • Early, D., & Schellekens, M. (2013). Running time of the Treapsort algorithm. Theoretical Computer Science, 487, 65–73. https://doi.org/10.1016/j.tcs.2013.03.012
  • Fakhri, M., Amoosoltani, E., Farhani, M., & Ahmadi, A. (2017). Determining optimal combination of roller compacted concrete pavement mixture containing recycled asphalt pavement and crumb rubber using hybrid artificial neural network-genetic algorithm method considering energy absorbency approach. Canadian Journal of Civil Engineering, 44(11), 945–955. https://doi.org/10.1139/cjce-2017-0124
  • Farina, A., Zanetti, M. C., Santagata, E., & Blengini, G. A. (2017). Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement. Resources, Conservation and Recycling, 117, 204–212. https://doi.org/10.1016/j.resconrec.2016.10.015
  • Fortin, F. A., De Rainville, F. M., Gardner, M. A., Parizeau, M., & Gagńe, C. (2012). DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research, 13, 2171–2175.
  • Frolova, O., & Salaiová, B. (2017). Analysis of road cover roughness on “control” road section with crumb tire rubber. Procedia Engineering, 190, 589–596. https://doi.org/10.1016/j.proeng.2017.05.384
  • Fuentes, L., Camargo, R., Arellana, J., Velosa, C., & Martinez-Arguelles, G. (2019). Modelling pavement serviceability of urban roads using deterministic and probabilistic approaches. International Journal of Pavement Engineering, 22(1), 77–86. https://doi.org/10.1080/10298436.2019.1577422
  • Georgiou, P., & Loizos, A. (2021). Environmental assessment of warm mix asphalt incorporating steel slag and high reclaimed asphalt for wearing courses: a case study. Road Materials and Pavement Design, 22(S1), S662–S671. https://doi.org/10.1080/14680629.2021.1906305
  • Giani, M. I., Dotelli, G., Brandini, N., & Zampori, L. (2015). Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling. Resources, Conservation and Recycling, 104, 224–238. https://doi.org/10.1016/j.resconrec.2015.08.006
  • Gloria, T. P., Lippiatt, B. C., & Cooper, J. (2007). Life cycle impact assessment weights to support environmentally preferable purchasing in the United States. Environmental Science and Technology, 41(21), 7551–7557. https://doi.org/10.1021/es070750+
  • Goli, H., & Latifi, M. (2020). Evaluation of the effect of moisture on behavior of warm mix asphalt (WMA) mixtures containing recycled asphalt pavement (RAP). Construction and Building Materials, 247, 118526, 1-11. https://doi.org/10.1016/j.conbuildmat.2020.118526
  • Grygar, D., & Fabricius, R. (2019). An efficient adjustment of genetic algorithm for Pareto front determination. Transportation Research Procedia, 40, 1335–1342. https://doi.org/10.1016/j.trpro.2019.07.185
  • Guo, M., Liu, H., Jiao, Y., Mo, L., Tan, Y., Wang, D., & Liang, M. (2020). Effect of WMA-RAP technology on pavement performance of asphalt mixture: A state-of-the-art review. Journal of Cleaner Production, 266, 121704, 1-8. https://doi.org/10.1016/j.jclepro.2020.121704
  • Gupta, A., Krishnaswamy, R., Nagarajan, V., & Ravi, R. (2015). Running errands in time: Approximation algorithms for Stochastic orienteering. Mathematics of Operations Research, 40(1), 56–79. https://doi.org/10.1287/moor.2014.0656
  • Gutierrez, D., Tapia, A., & Rodriguez, A. (2020). Algoritmos Genéticos con Python: Un enfoque práctico para resolver problemas de ingeniería. Marcombo. ISBN 97884267298
  • Habbouche, J., Boz, I., Underwood, B. S., Castorena, C., Gulzar, S., Fried, A., & Preciado, J. (2021). Review from multiple perspectives for the state of the practice on the use of recycled asphalt materials and recycling agents in asphalt concrete surface mixtures. Transportation Research Record, 1–14. https://doi.org/10.1177/03611981211061130
  • Hamdar, Y. S., Kassem, H. A., & Chehab, G. R. (2020). Using different performance measures for the sustainability assessment of asphalt mixtures: case of warm mix asphalt in a hot climate. Road Materials and Pavement Design, 21(1), 1–24. https://doi.org/10.1080/14680629.2018.1474795
  • Hamida, S. Ben, & Benjelloun, G. (2021). Extending DEAP with active sampling for evolutionary supervised learning. Proceedings of the 16th International Conference on Software Technologies, ICSOFT 2021, 574–582. https://doi.org/10.5220/0010604605740582
  • Harini, D. N., & Karthi, R. (2022). Performance analysis of genetic algorithm for function optimization in multicore platform using DEAP. Soft Computing and Signal Processing - Proceedings of 3er ICSCSP 2020, 2, 269–279. https://doi.org/10.1007/978-981-16-1249-7
  • Harvey, J. T., Meijer, J., Ozer, H., Al-Qadi, I., Saboori, A., & Kendall, A. (2016). Pavement Life Cycle Assessment Framework. Federal Highway Administration, FHWA-HIF-16-014, 1–246.
  • Hasan, U., Whyte, A., & Al Jassmi, H. (2020). Life cycle assessment of roadworks in United Arab Emirates: Recycled construction waste, reclaimed asphalt pavement, warm-mix asphalt and blast furnace slag use against traditional approach. Journal of Cleaner Production, 257, 120531, 1-16. https://doi.org/10.1016/j.jclepro.2020.120531
  • Hassan, N. A., Airey, G. D., Jaya, R. P.,Mashros, N., & Aziz, M. A. (2014). A review of crumb rubber modification in dry mixed rubberised asphalt mixtures. Jurnal Teknologi, 70(4), 127–134. https://doi.org/10.11113/jt.v70.3501
  • Herrmann, I. T., & Moltesen, A. (2015). Does it matter which Life Cycle Assessment (LCA) tool you choose? - A comparative assessment of SimaPro and GaBi. Journal of Cleaner Production, 86, 163–169. https://doi.org/10.1016/j.jclepro.2014.08.004
  • Hischier, R., Weidema, B., Althaus, H.-J., Bauer, C., Doka, G., Dones, R., Frischknecht, R., Hellweg, S., Humbert, S., Jungbluth, N., Köllner, T., Loerincik, Y., Margni, M., & Nemecek, T. (2010). Implementation of Life Cycle Impact Assessment Methods: Data v2.2. Ecoinvent Report No. 3, Ecoinvent report No. 3
  • Hochschorner, E., & Noring, M. (2011). Practitioners’ use of life cycle costing with environmental costs - A Swedish study. International Journal of Life Cycle Assessment, 16(9), 897–902. https://doi.org/10.1007/s11367-011-0325-3
  • Hoogmartens, R., Van Passel, S., Van Acker, K., & Dubois, M. (2014). Bridging the gap between LCA, LCC and CBA as sustainability assessment tools. Environmental Impact Assessment Review, 48, 27–33. https://doi.org/10.1016/j.eiar.2014.05.001
  • Hoy, M., Horpibulsuk, S., & Arulrajah, A. (2016). Strength development of Recycled Asphalt Pavement - Fly ash geopolymer as a road construction material. Construction and Building Materials, 117, 209–219. https://doi.org/10.1016/j.conbuildmat.2016.04.136
  • IEA. (2004). Energy Statistics Manual. OECD Publishing, Paris, Annex 3, 177-183. https://doi.org/10.1787/9789264033986-en
  • Ingrassia, L. P., Cardone, F., Ferrotti, G., & Canestrari, F. (2021). Monitoring the evolution of the structural properties of warm recycled pavements with Falling Weight Deflectometer and laboratory tests. Road Materials and Pavement Design, 22(S1), S69–S82. https://doi.org/10.1080/14680629.2021.1906302
  • INVIAS. (2021). Análisis de Precios Unitarios (APUS) para Atlántico-Colombia. Instituto Nacional de Vias, 1, 1–7.
  • Inyim, P., Pereyra, J., Bienvenu, M., & Mostafavi, A. (2016). Environmental assessment of pavement infrastructure: A systematic review. Journal of Environmental Management, 176, 128–138. https://doi.org/10.1016/j.jenvman.2016.03.042
  • Ishibuchi, H., Akedo, N., & Nojima, Y. (2015). Behavior of multiobjective evolutionary algorithms on many-objective Knapsack problems. IEEE Transactions on Evolutionary Computation, 19(2), 264–283. https://doi.org/10.1109/TEVC.2014.2315442
  • Islam, H., Jollands, M., & Setunge, S. (2015). Life cycle assessment and life cycle cost implication of residential buildings - A review. Renewable and Sustainable Energy Reviews, 42, 129–140. https://doi.org/10.1016/j.rser.2014.10.006
  • ISO. (2006a). ISO 14040: Environmental Management - Life Cycle Assessment - Principles and Framework. International Organization for Standardization (ISO), 1–32.
  • ISO. (2006b). ISO 14044: Environmental Management - Life Cycle Assessment - Requirements and Guidelines. International Organization for Standardization (ISO), 1–58.
  • ISO. (2017). ISO 15686-5: Buildings and constructed assests - Service life planning - Part 5: Life-cycle costing. International Organization for Standardization (ISO), 1–15.
  • Jafaryeganeh, H., Ventura, M., & Guedes Soares, C. (2020). Application of multi-criteria decision making methods for selection of ship internal layout design from a Pareto optimal set. Ocean Engineering, 202, 107151, 1-14. https://doi.org/10.1016/j.oceaneng.2020.107151
  • Jeswani, H. K., Azapagic, A., Schepelmann, P., & Ritthoff, M. (2010). Options for broadening and deepening the LCA approaches. Journal of Cleaner Production, 18(2), 120–127. https://doi.org/10.1016/j.jclepro.2009.09.023
  • Jocanovic, M., Agarski, B., Karanovic, V., Orosnjak, M., Micunovic, M. I., Ostojic, G., & Stankovski, S. (2019). LCA/LCC model for evaluation of pump units in water distribution systems. Symmetry, 11(1181), 1–21. https://doi.org/10.3390/sym11091181
  • Jomoor, N. B., Fakhri, M., & Keymanesh, M. R. (2019). Determining the optimum amount of recycled asphalt pavement (RAP) in warm stone matrix asphalt using dynamic creep test. Construction and Building Materials, 228, 116736, 1-11. https://doi.org/10.1016/j.conbuildmat.2019.116736
  • Kambanou, M. L. (2020). Life cycle costing: Understanding how it is practised and its relationship to life cycle management - A case study. Sustainability, 12(8), 3252, 1-19. https://doi.org/10.3390/su12083252
  • Kim, J., & Yoo, S. (2019). Software review: DEAP (Distributed Evolutionary Algorithm in Python) library. Genetic Programming and Evolvable Machines, 20(1), 139–142. https://doi.org/10.1007/s10710-018-9341-4
  • Kurasova, O., Petkus, T., & Filatovas, E. (2013). Visualization of Pareto front points when solving multi-objective optimization problems. Information Technology and Control, 42(4), 353–361. https://doi.org/10.5755/j01.itc.42.4.3209
  • Kurda, R., de Brito, J., & Silvestre, J. D. (2019a). CONCRETop - A multi-criteria decision method for concrete optimization. Environmental Impact Assessment Review, 74, 73–85. https://doi.org/10.1016/j.eiar.2018.10.006
  • Kurda, R., de Brito, J., & Silvestre, J. D. (2019b). CONCRETop method: Optimization of concrete with various incorporation ratios of fly ash and recycled aggregates in terms of quality performance and life-cycle cost and environmental impacts. Journal of Cleaner Production, 226, 642–657. https://doi.org/10.1016/j.jclepro.2019.04.070
  • Li, B., Li, J., Tang, K., & Yao, X. (2015). Many-objective evolutionary algorithms: A survey. ACM Computing Surveys, 48(1), 13:1-35. https://doi.org/10.1145/2792984
  • Liang, C., Xu, X., Chen, H., Wang, W., Zheng, K., Tan, G., Gu, Z., & Zhang, H. (2021). Machine learning approach to develop a novel multi-objective optimization method for pavement material proportion. Applied Sciences, 11(835), 1–26. https://doi.org/10.3390/app11020835
  • Lippiatt, B. C. (2007). BEES 4.0: Building for Environmental and Economic Sustainability, Technical Manual and User Guide. National Institute of Standards and Technology, NISTIR 7423, 1–307.
  • Lo Presti, D. (2013). Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review. Construction and Building Materials, 49, 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007
  • Lu, D. X., & Saleh, M. (2016). Laboratory evaluation of warm mix asphalt incorporating high RAP proportion by using evotherm and sylvaroad additives. Construction and Building Materials, 114, 580–587. https://doi.org/10.1016/j.conbuildmat.2016.03.200
  • Lyu, Z., Shen, A., Qin, X., Yang, X., & Li, Y. (2019). Grey target optimization and the mechanism of cold recycled asphalt mixture with comprehensive performance. Construction and Building Materials, 198, 269–277. https://doi.org/10.1016/j.conbuildmat.2018.11.274
  • Ma, Y., Zhang, Z., Zhao, X., & Wu, S. (2018). LCA/LCC analysis of starting-lighting- ignition lead-acid battery in China. PeerJ, 7, 1–17. https://doi.org/10.7717/peerj.5238
  • Ma, H., Yu, S., Wang, J., & Yu, W. (2019). A comparative life cycle assessment (LCA) of warm mix asphalt (WMA) and hot mix asphalt (HMA) pavement: A case study in China. Advances in Civil Engineering, 9391857, 1–12. https://doi.org/10.1155/2019/9391857
  • Martinez-Arguelles, G., Acosta, M., Dugarte, M., & Fuentes, L. (2019). Life Cycle Assessment of Natural and Recycled Concrete Aggregate Production for Road Pavements Applications in the Northern Region of Colombia: Case Study. Transportation Research Record, 2673(5), 397–406. https://doi.org/10.1177/0361198119839955
  • Mashaan, N. S., Ali, A. H., Karim, M. R., & Abdelaziz, M. (2014). A review on using crumb rubber in reinforcement of asphalt pavement. The Scientific World Journal, 214612, 1–21. https://doi.org/10.1155/2014/214612
  • Mazumder, M., Sriraman, V., Kim, H. H., & Lee, S. J. (2016). Quantifying the environmental burdens of the hot mix asphalt (HMA) pavements and the production of warm mix asphalt (WMA). International Journal of Pavement Research and Technology, 9(3), 190–201. https://doi.org/10.1016/j.ijprt.2016.06.001
  • Miao, J., Wang, X., Bai, S., Xiang, Y., & Li, L. (2021). Distance-to-target weighting factor sets in LCA for China under 2030 vision. Journal of Cleaner Production, 314(73), 128010, 1-9. https://doi.org/10.1016/j.jclepro.2021.128010
  • Miró, R., Valdés, G., Martínez, A., Segura, P., & Rodríguez, C. (2011). Evaluation of high modulus mixture behaviour with high reclaimed asphalt pavement (RAP) percentages for sustainable road construction. Construction and Building Materials, 25(10), 3854–3862. https://doi.org/10.1016/j.conbuildmat.2011.04.006
  • Mirsaleh, M. R., & Meybodi, M. R. (2018). Balancing exploration and exploitation in memetic algorithms: A learning automata approach. Computational Intelligence, 34(1), 282–309. https://doi.org/10.1111/coin.12148
  • Mohammad, L. N., Hassan, M. M., Vallabhu, B., & Kabir, M. S. (2014). Louisiana’s Experience with WMA Technologies: Mechanistic, Environmental, and Economic Analysis. Journal of Materials in Civil Engineering, 27(6), 04014185, 1-13. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001143
  • Mohan, M. (2018). Chapter 14: Perovskite Photovoltaics - Life Cycle Assessment. In S. Thomas & A. Thankappan (Eds.), Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation. Elsevier Inc, 447-480. https://doi.org/10.1016/B978-0-12-812915-9.00014-9
  • Mohar, S. S., Goyal, S., & Kaur, R. (2022). Localization of sensor nodes in wireless sensor networks using bat optimization algorithm with enhanced exploration and exploitation characteristics. Journal of Supercomputing, 1–49. https://doi.org/10.1007/s11227-022-04320-x
  • Moins, B., France, C., Van den bergh, W., & Audenaert, A. (2020). Implementing life cycle cost analysis in road engineering: A critical review on methodological framework choices. Renewable and Sustainable Energy Reviews, 133, 110284, 1-17. https://doi.org/10.1016/j.rser.2020.110284
  • Monu, K., Ransinchung, G., Pandey, G. S., & Singh, S. (2020). Performance evaluation of recycled-concrete aggregates and reclaimed-asphalt pavements for foam-mix asphalt mixes. Journal of Materials in Civil Engineering, 32(10), 04020295, 1-12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003356
  • Moreno, F., Rubio, M. C., & Martinez-Echevarria, M. J. (2011). Analysis of digestion time and the crumb rubber percentage in dry-process crumb rubber modified hot bituminous mixes. Construction and Building Materials, 25(5), 2323–2334. https://doi.org/10.1016/j.conbuildmat.2010.11.029
  • Moreno Ruiz, E., Valsasina, L., FitzGerlad, D., Symeonidis, A., Turner, D., Muller, J., Minas, N., Bourgault, G., Vadenbo, C., Ioannidou, D., & Wernet, G. (2020). Documentation of changes implemented in ecoinvent database v3.7 & v3.7.1. Ecoinvent Association, Zürich, Switzerland, 1–126.
  • Naseri, H., Fani, A., & Golroo, A. (2020). Toward equity in large-scale network-level pavement maintenance and rehabilitation scheduling using water cycle and genetic algorithms. International Journal of Pavement Engineering, 1–13. https://doi.org/10.1080/10298436.2020.1790558
  • Naves, A. X., Barreneche, C., Fernández, A. I., Cabeza, L. F., Haddad, A. N., & Boer, D. (2019). Life cycle costing as a bottom line for the life cycle sustainability assessment in the solar energy sector: A review. Solar Energy, 192, 238–262. https://doi.org/10.1016/j.solener.2018.04.011
  • Nikkhah, A., Firouzi, S., El Haj Assad, M., & Ghnimi, S. (2019). Application of analytic hierarchy process to develop a weighting scheme for life cycle assessment of agricultural production. Science of the Total Environment, 665, 538–545. https://doi.org/10.1016/j.scitotenv.2019.02.170
  • Norambuena-Contretas, J., Poulikakos, L., Baaj, H., & Liu, Q. (2020). Novel bituminous materials for sustainable pavements. Advances in Materials Science and Engineering, 3265052, 1–2. https://doi.org/10.1155/2020/3265052
  • NREL. (2009). U.S. Life Cycle Inventory Database Roadmap. National Renewable Energy Laboratory, 1–12.
  • Núñez, M., Bouchard, C. R., Bulle, C., Boulay, A. M., & Margni, M. (2016). Critical analysis of life cycle impact assessment methods addressing consequences of freshwater use on ecosystems and recommendations for future method development. International Journal of Life Cycle Assessment, 21(12), 1799–1815. https://doi.org/10.1007/s11367-016-1127-4
  • Obazee-Igbinedion, S., & Owolabi, O. (2018). Building sustainability index for highway infrastructures: A case study of Maryland. Frontiers of Structural and Civil Engineering, 12(2), 192–200. https://doi.org/10.1007/s11709-017-0413-y
  • Pasandín, A. R., & Pérez, I. (2013). Laboratory evaluation of hot-mix asphalt containing construction and demolition waste. Construction and Building Materials, 43, 497–505. https://doi.org/10.1016/j.conbuildmat.2013.02.052
  • Pasandín, A. R., & Pérez, I. (2015). Characterisation of recycled concrete aggregates when used in asphalt concrete: A technical literature review. European Journal of Environmental and Civil Engineering, 19(8), 917–930. https://doi.org/10.1080/19648189.2014.985850
  • Pasetto, M., Baliello, A., Giacomello, G., & Pasquini, E. (2017). Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. Journal of Cleaner Production, 166, 835–843. https://doi.org/10.1016/j.jclepro.2017.07.212
  • Pelletier, N., Parker, R., & Henriksson, P. (2019). Chapter 8: Environmental nutrition and LCA. In: Joan Sabaté, ed. Environmental Nutrition: Connecting Health and Nutrition with Environmentally Sustainable Diets (pp. 141–156). https://doi.org/10.1016/B978-0-12-811660-9.00009-6
  • Pelusi, D., Mascella, R., Tallini, L., Nayak, J., Naik, B., & Deng, Y. (2020). Improving exploration and exploitation via a Hyperbolic Gravitational Search Algorithm. Knowledge-Based Systems, 193, 105404, 1-13. https://doi.org/10.1016/j.knosys.2019.105404
  • Peña, A., & Rovira-Val, M. R. (2020). A longitudinal literature review of life cycle costing applied to urban agriculture. International Journal of Life Cycle Assessment, 25(8), 1418–1435. https://doi.org/10.1007/s11367-020-01768-y
  • Pizzol, M., Laurent, A., Sala, S., Weidema, B., Verones, F., & Koffler, C. (2017). Normalisation and weighting in life cycle assessment: quo vadis? International Journal of Life Cycle Assessment, 22(6), 853–866. https://doi.org/10.1007/s11367-016-1199-1
  • Plati, C., Georgouli, K., Cliatt, B., & Loizos, A. (2017). Incorporation of GPR data into genetic algorithms for assessing recycled pavements. Construction and Building Materials, 154, 1263–1271. https://doi.org/10.1016/j.conbuildmat.2017.06.109
  • Plati, C. (2019). Sustainability factors in pavement materials, design, and preservation strategies: A literature review. Construction and Building Materials, 211, 539–555. https://doi.org/10.1016/j.conbuildmat.2019.03.242
  • Polo-Mendoza, R., Peñabaena-Niebles, R., Giustozzi, F., & Martinez-Arguelles, G. (2022). Eco-friendly design of Warm Mix Asphalt (WMA) with Recycled Concrete Aggregate (RCA): A case study from a developing country. Construction and Building Materials, 326, 126890, 1-16. https://doi.org/10.1016/j.conbuildmat.2022.126890
  • Posom, J., & Sirisomboon, P. (2017). Evaluation of lower heating value and elemental composition of bamboo using near infrared spectroscopy. Energy, 121, 147–158. https://doi.org/10.1016/j.energy.2017.01.020
  • Rao, R. V., & Lakshmi, R. J. (2021). Ranking of Pareto-optimal solutions and selecting the best solution in multi- and many-objective optimization problems using R-method. Soft Computing Letters, 3, 100015, 1-18. https://doi.org/10.1016/j.socl.2021.100015
  • Riekstins, A., Baumanis, J., & Barbars, J. (2021). Laboratory investigation of crumb rubber in dense graded asphalt by wet and dry processes. Construction and Building Materials, 292, 123459, 1-10. https://doi.org/10.1016/j.conbuildmat.2021.123459
  • Rodríguez-Alloza, A. M., Malik, A., Lenzen, M., & Gallego, J. (2015). Hybrid input-output life cycle assessment of warm mix asphalt mixtures. Journal of Cleaner Production, 90, 171–182. https://doi.org/10.1016/j.jclepro.2014.11.035
  • Rodríguez-Fernández, I., Baheri, F., Cavalli, M., Poulikakos, L. D., & Bueno, M. (2020). Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process. Construction and Building Materials, 259, 119662, 1-10. https://doi.org/10.1016/j.conbuildmat.2020.119662
  • Rodríguez-Fernández, I., Cavalli, M. C., Poulikakos, L., & Bueno, M. (2020). Recyclability of asphalt mixtures with crumb rubber incorporated by dry process: A laboratory investigation. Materials, 13(2870), 1–13. https://doi.org/10.3390/ma13122870
  • Rubio, M. C., Martínez, G., Baena, L., & Moreno, F. (2012). Warm Mix Asphalt: An overview. Journal of Cleaner Production, 24, 76–84. https://doi.org/10.1016/j.jclepro.2011.11.053
  • Saboo, N., Prasad, N., Sukhija, M., Chaudhary, M., & Chandrappa, A. K. (2020). Effect of the use of recycled asphalt pavement (RAP) aggregates on the performance of pervious paver blocks (PPB). Construction and Building Materials, 262, 120581, 1-13. https://doi.org/10.1016/j.conbuildmat.2020.120581
  • Sackey, S., & Kim, B.-S. (2018). Environmental and Economic Performance of Asphalt Shingle and Clay Tile Roofing Sheets Using Life Cycle Assessment Approach and TOPSIS. Journal of Construction Engineering and Management, 144(11), 04018104, 1-10. https://doi.org/10.1061/(asce)co.1943-7862.0001564
  • Sadrossadat, E., Heidaripanah, A., & Ghorbani, B. (2018). Towards application of linear genetic programming for indirect estimation of the resilient modulus of pavements subgrade soils. Road Materials and Pavement Design, 19(1), 139–153. https://doi.org/10.1080/14680629.2016.1250665
  • Sanchez-Cotte, E., Pacheco, C., Ana, F., Pineda, Y., Mercado, R., Yepes-Martinez, J., & Lagares, R. (2020). The chemical-mineralogical characterization of recycled concrete aggregates from different sources and their potential reactions in asphalt mixtures. Materials, 13(5592), 1–18. https://doi.org/10.3390/ma13245592
  • Sanchez-Cotte, E., Fuentes, L., Martinez-Arguelles, G., Rondon, H., Walubita, L., & Cantero, J. (2020). Influence of recycled concrete aggregates from different sources in hot mix asphalt design. Construction and Building Materials, 259, 120427, 1-14. https://doi.org/10.1016/j.conbuildmat.2020.120427
  • Santos, J., Flintsch, G., & Ferreira, A. (2018). Life cycle assessment of low temperature asphalt mixtures for road pavement surfaces: A comparative analysis. Resources, Conservation and Recycling, 138, 283–297. https://doi.org/10.1016/j.resconrec.2018.07.012
  • Santos, R., Costa, A. A., Silvestre, J. D., & Pyl, L. (2019). Integration of LCA and LCC analysis within a BIM-based environment. Automation in Construction, 103, 127–149. https://doi.org/10.1016/j.autcon.2019.02.011
  • Santos, J., Ferreira, A., & Flintsch, G. (2017). A multi-objective optimization-based pavement management decision-support system for enhancing pavement sustainability. Journal of Cleaner Production, 164, 1380–1393. https://doi.org/10.1016/j.jclepro.2017.07.027
  • Santos, J., Ferreira, A., & Flintsch, G. (2019). An adaptive hybrid genetic algorithm for pavement management. International Journal of Pavement Engineering, 20(3), 266–286. https://doi.org/10.1080/10298436.2017.1293260
  • Santos, J., Flintsch, G., & Ferreira, A. (2017). Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability. Resources, Conservation and Recycling, 116, 15–31. https://doi.org/10.1016/j.resconrec.2016.08.025
  • Sartori, T., Drogemuller, R., Omrani, S., & Lamari, F. (2021). A schematic framework for Life Cycle Assessment (LCA) and Green Building Rating System (GBRS). Journal of Building Engineering, 38, 102180. https://doi.org/10.1016/j.jobe.2021.102180
  • Schrijvers, D. L., Loubet, P., & Sonnemann, G. (2016). Critical review of guidelines against a systematic framework with regard to consistency on allocation procedures for recycling in LCA. International Journal of Life Cycle Assessment, 21, 994–1008. https://doi.org/10.1007/s11367-016-1069-x
  • Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., & Balas, A. (2012). Progress in used tyres management in the European Union: A review. Waste Management, 32(10), 1742–1751. https://doi.org/10.1016/j.wasman.2012.05.010
  • Singh, A., & Deep, K. (2019). Exploration-exploitation balance in Artificial Bee Colony algorithm: a critical analysis. Soft Computing, 23(19), 9525–9536. https://doi.org/10.1007/s00500-018-3515-0
  • Sohn, J., Kalbar, P., Goldstein, B., & Birkved, M. (2020). Defining temporally dynamic life cycle assessment: A review. Integrated Environmental Assessment and Management, 16(3), 314–323. https://doi.org/10.1002/ieam.4235
  • Starostka-Patyk, M. (2015). New Products Design Decision Making Support by SimaPro Software on the Base of Defective Products Management. Procedia Computer Science, 65, 1066–1074. https://doi.org/10.1016/j.procs.2015.09.051
  • Stimilli, A., Virgili, A., & Canestrari, F. (2015). New method to estimate the “re-activated” binder amount in recycled hot-mix asphalt. Road Materials and Pavement Design, 16(S1), 442–459. https://doi.org/10.1080/14680629.2015.1029678
  • Stimilli, A., Virgili, A., & Canestrari, F. (2017). Warm recycling of flexible pavements: Effectiveness of Warm Mix Asphalt additives on modified bitumen and mixture performance. Journal of Cleaner Production, 156, 911–922. https://doi.org/10.1016/j.jclepro.2017.03.235
  • Su, S., Li, X., Zhu, Y., & Lin, B. (2017). Dynamic LCA framework for environmental impact assessment of buildings. Energy and Buildings, 149, 310–320. https://doi.org/10.1016/j.enbuild.2017.05.042
  • Su, S., Zhu, C., & Li, X. (2019). A dynamic weighting system considering temporal variations using the DTT approach in LCA of buildings. Journal of Cleaner Production, 220, 398–407. https://doi.org/10.1016/j.jclepro.2019.02.140
  • Suh, S., & Lippiatt, B. C. (2012). Framework for hybrid life cycle inventory databases: a case study on the Building for Environmental and Economic Sustainability (BEES) database. International Journal of Life Cycle Assessment, 17(5), 604–612. https://doi.org/10.1007/s11367-012-0393-z
  • Sukhija, M., & Saboo, N. (2021). A comprehensive review of warm mix asphalt mixtures-laboratory to field. Construction and Building Materials, 274, 121781, 1-23. https://doi.org/10.1016/j.conbuildmat.2020.121781
  • Sun, X., Qin, X., Liu, Z., Yin, Y., Jiang, S., & Wang, X. (2020). Applying feasibility analysis and catalytic purifying potential of novel modifying agent used in asphalt pavement materials. Construction and Building Materials, 245, 118467, 1-11. https://doi.org/10.1016/j.conbuildmat.2020.118467
  • Tirado, P., & Valero, O. (2009). The average running time of an algorithm as a midpoint between fuzzy sets. Mathematical and Computer Modelling, 49(9–10), 1852–1868. https://doi.org/10.1016/j.mcm.2008.08.003
  • Tuomisto, H. L., Hodge, I. D., Riordan, P., & MacDonald, D. W. (2012). Exploring a safe operating approach to weighting in life cycle impact assessment - A case study of organic, conventional and integrated farming systems. Journal of Cleaner Production, 37, 147–153. https://doi.org/10.1016/j.jclepro.2012.06.025
  • Vaitkus, A., Čygas, D., Laurinavičius, A., Vorobjovas, V., & Perveneckas, Z. (2016). Influence of warm mix asphalt technology on asphalt physical and mechanical properties. Construction and Building Materials, 112, 800–806. https://doi.org/10.1016/j.conbuildmat.2016.02.212
  • Van Dam, T. J., Harvey, J. T., Muench, S. T., Smith, K. D., Snyder, M. B., Al-Qadi, I. L., Ozer, H., Meijer, J., Ram, P. V., Roesler, J. R., & Kendall, A. (2015). Towards sustainable pavement systems : A reference document. Federal Highway Administration, FHWA-HIF-15-002, 1–430.
  • Vandewalle, D., et al (2020). Assessment of eco-friendly pavement construction and maintenance using multi-recycled RAP mixtures. Recycling, 5(17), 1–21. https://doi.org/10.3390/recycling5030017
  • Vega, D., Martinez-Arguelles, G., & Santos, J. (2019). Life Cycle Assessment of Warm Mix Asphalt with Recycled Concrete Aggregate. IOP Conference Series: Materials Science and Engineering, 603(052016), 1–9. https://doi.org/10.1088/1757-899X/603/5/052016
  • Vega, D., Martinez-Arguelles, G., & Santos, J. (2020). Comparative life cycle assessment of warm mix asphalt with recycled concrete aggregates: A Colombian case study. Procedia CIRP, 90, 285–290. https://doi.org/10.1016/j.procir.2020.02.126
  • Vega, D., Santos, J., & Martinez-Arguelles, G. (2020a). Carbon footprint of asphalt road pavements using warm mix asphalt with recycled concrete aggregates: A Colombian case study. Pavement, Roadway, and Bridge Life Cycle Assessment 2020, 333–342. isbn: 9781003092278
  • Vega, D., Santos, J., & Martinez-Arguelles, G. (2020b). Life cycle assessment of hot mix asphalt with recycled concrete aggregates for road pavements construction. International Journal of Pavement Engineering, 1–14. https://doi.org/10.1080/10298436.2020.1778694
  • Venkata Lavanya, P., Venkata Narasimhulu, C., & Prasad, S. K. (2022). Image denoising using an artificial neural network and genetic optimization algorithm based dual-tree complex wavelet transform. Soft Computing and Signal Processing - Proceedings of 3er ICSCSP 2020, 2, 393–401. https://doi.org/10.1007/978-981-16-1249-7
  • Vidal, R., Moliner, E., Martínez, G., & Rubio, M. C. (2013). Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resources, Conservation and Recycling, 74, 101–114. https://doi.org/10.1016/j.resconrec.2013.02.018
  • Vidergar, P., Perc, M., & Lukman, R. K. (2021). A survey of the life cycle assessment of food supply chains. Journal of Cleaner Production, 286, 125506, 1-10. https://doi.org/10.1016/j.jclepro.2020.125506
  • Vignali, V., Mazzotta, F., Sangiorgi, C., Simone, A., Lantieri, C., & Dondi, G. (2016). Incorporation of rubber powder as filler in a new dry-hybrid technology: Rheological and 3D DEM mastic performances evaluation. Materials, 9(842), 1–20. https://doi.org/10.3390/ma9100842
  • Wang, H., Liu, X., Apostolidis, P., & Scarpas, T. (2018). Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology. Journal of Cleaner Production, 177, 302–314. https://doi.org/10.1016/j.jclepro.2017.12.245
  • Weidema, B. P., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., Vadenbo, C. O., & Wenet, G. (2013). Overview and methodology: Data quality guideline for the ecoinvent database version 3. Ecoinvent Association, 1–161.
  • WNA (2021). Heat Values of Varios Fuels. World Nuclear Association Website.
  • Xu, S., Xiao, F., Amirkhanian, S., & Singh, D. (2017). Moisture characteristics of mixtures with warm mix asphalt technologies – A review. Construction and Building Materials, 142, 148–161. https://doi.org/10.1016/j.conbuildmat.2017.03.069
  • Yu, B., Gu, X., Ni, F., & Guo, R. (2015). Multi-objective optimization for asphalt pavement maintenance plans at project level: Integrating performance, cost and environment. Transportation Research Part D: Transport and Environment, 41, 64–74. https://doi.org/10.1016/j.trd.2015.09.016
  • Yu, H., Leng, Z., & Gao, Z. (2016). Thermal analysis on the component interaction of asphalt binders modified with crumb rubber and warm mix additives. Construction and Building Materials, 125, 168–174. https://doi.org/10.1016/j.conbuildmat.2016.08.032
  • Yucel, A. O., Ozturk, H. I., & Guler, M. (2021). Influence of warm mix additive on internal structure of dry process crumb rubber modified mixtures. Journal of Cleaner Production, 313(1), 127959, 1-11. https://doi.org/10.1016/j.jclepro.2021.127959
  • Zhang, X., Otto, F., & Oeser, M. (2021). Pavement moduli back-calculation using artificial neural network and genetic algorithms. Construction and Building Materials, 287, 123026, 1-10. https://doi.org/10.1016/j.conbuildmat.2021.123026
  • Zhao, Y., Goulias, D., & Peterson, D. (2021). Recycled Asphalt Pavement materials in transport pavement infrastructure: Sustainability analysis & metrics. Sustainability, 13(8071), 1–15. https://doi.org/10.3390/su13148071
  • Zhao, Z., Xiao, F., & Amirkhanian, S. (2020). Recent applications of waste solid materials in pavement engineering. Waste Management, 108, 78–105. https://doi.org/10.1016/j.wasman.2020.04.024