144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Plastic strain rate in granular materials as a function of stress history: a probabilistic approach for the PBD model

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2078974 | Received 17 Jun 2021, Accepted 13 May 2022, Published online: 31 May 2022

References

  • AASHTO, 1993. AASHTO guide for design of pavement structures. Washington: American Association of State Highway and Transportation Officials.
  • AASHTO, 2020. Mechanistic-empirical pavement design guide: a manual of practice. Washington: American Association of State Highway and Transportation Officials.
  • Aleksandrov, A., et al., 2018. The application of the principles of the theory of shakedown to the calculation of pavement layers of granular materials in shear. MATEC Web of Conferences, 239, 1–8. doi:10.1051/matecconf/201823905019.
  • ARA Inc, 2004. Guide for the mechanistic-empirical design of new and rehabilitated pavement structures (final report no. NCHRP 1-37A). Washington: Transportation Research Board of the National Academies.
  • Arnold, G., Alabaster, D., and Steven, B., 2001. Prediction of pavement performance from repeat load triaxial tests on granular materials (Research Report). Transfund New Zealand.
  • Ba, M., Tinjum, J.M., and Fall, M, 2015. Prediction of permanent deformation model parameters of unbound base course aggregates under repeated loading. Road Materials and Pavement Design, 16, 854–869. doi:10.1080/14680629.2015.1063534.
  • Bilodeau, J.-P., Doré, G., and Calvar, A, 2017. Détermination de la résistance à la déformation permanente des matériaux granulaires de fondation de chaussées. Quebec: Ministère des Transports, de la Mobilité Durable et de l’Électrification des Transports.
  • Bilodeau, J.-P., Doré, G., and Schwarz, C, 2011. Effect of seasonal frost conditions on the permanent strain behaviour of compacted unbound granular materials used as base course. International Journal of Pavement Engineering, 12, 507–518. doi:10.1080/10298436.2011.552605.
  • Boulbibane, M., et al., 2005. Shakedown of unbound pavements. Road Materials and Pavement Design, 6, 81–96.
  • CEN, 2003. Unbound and hydraulically bound mixtures – test methods: cyclic load triaxial tests for unbound mixtures. Brussels, Belgium: Comité Européen de Normalisation.
  • D04 Committee, 2019. Test method for theoretical maximum specific gravity and density of bituminous paving mixtures. ASTM International. doi:10.1520/D2041_D2041M-19
  • D18 Committee, 2015. Test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2700 kN-m/m3)). ASTM International. doi:10.1520/D1557-12
  • Doré, G., and Zubeck, H.K., 2009. Cold regions pavement engineering. New York: ASCE Press.
  • Doucet, F., and Auger, B., 2012. Complex modulus determination of asphalt mixes at the Ministère Des Transports Du Québec (No. Rep. No. RTQ-10-01). Quebec: Ministère des Transports du Québec, Direction du laboratoire des chaussées, Service des matériaux d’infrastructures.
  • E17 Committee, 2020. Practice for roads and parking lots pavement condition index surveys. ASTM International. doi:10.1520/D6433-20
  • Gu, F., et al., 2017. Characterization and prediction of permanent deformation properties of unbound granular materials for pavement ME design. Construction and Building Materials, 155, 584–592. doi:10.1016/j.conbuildmat.2017.08.116.
  • Hilbe, J., 2015. Practical guide to logistic regression. Boca Raton: Chapman and Hall.
  • Jegatheesan, P., and Gnanendran, C, 2016. Permanent deformation study of pavement layers using laboratory pavement model. International Journal of Geomechanics, 16.
  • Korkiala-Tanttu, L., 2008. Calculation method for permanent deformation of unbound pavement materials. Dissertation (PhD). Helsinki University of Technology.
  • Lekarp, F., Isacsson, U., and Dawson, A, 2000. State of the art. II: permanent strain response of unbound aggregates. Journal of Transportation Engineering, 126, 76–83. doi:10.1061/(ASCE)0733-947X(2000)126:1(76).
  • Pérez-González, E., et al., 2020. Assessment of the permanent deformation at the earth-core of a Rockfill dam under heavy vehicle loading. Canadian Geotechnical Journal. doi:10.1139/cgj-2019-0449.
  • Pérez-González, E., 2021. Development of an analysis tool to quantify the effect of superheavy load vehicles on pavements. Thesis (PhD). Université Laval.
  • Pérez-González, E., Bilodeau, J.-P., and Doré, G., 2019. Permanent deformation caused by trucks with unconventional axle configurations: An analysis based on the dissipated energy approach. Presented at the 2019 TAC-ITS Canada Joint Conference, Halifax, NS, Canada.
  • Pérez-González, E., Bilodeau, J.-P., and Doré, G, 2021a. Analysis model for permanent deformation in granular materials under the action of super-heavy vehicles. Transportation Geotechnics. doi:10.1016/j.trgeo.2021.100536.
  • Pérez-González, E., Bilodeau, J.-P., and Doré, G, 2021b. Use of the permanent strain rate in the analysis of the effect of superheavy vehicles on pavements: field validation. Transportation Geotechnics, doi:10.1016/j.trgeo.2021.100603.
  • Pérez-González, E., Bilodeau, J.-P., and Doré, G, 2021c. Analysis of the effect of superheavy load vehicles: a review of current criteria. Canadian Journal of Civil Engineering. doi:10.1139/cjce-2020-0483.
  • Pérez-González, E., Bilodeau, J.-P., and Doré, G, 2021d. A criterion to quantify the effect of superheavy vehicles on asphalt pavements based on layers deformation. International Journal of Pavement Engineering. doi:10.1080/10298436.2021.1948045.
  • Rahman, M.S., and Erlingsson, S, 2015. A model for predicting permanent deformation of unbound granular materials. Road Materials and Pavement Design, 16, 653–673. doi:10.1080/14680629.2015.1026382.
  • Tong, J., et al., 2020. A criterion of asphalt pavement rutting based on the thermal-visco-elastic-plastic model. International Journal of Pavement Engineering, 1–11. doi:10.1080/10298436.2020.1792470.
  • Werkmeister, S., Dawson, A., and Wellner, F, 2001. Permanent deformation behaviour of granular materials and the shakedown theory. Transportation Research Record, 1757, 75–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.