135
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Characterisation of asphalt concrete mixes with municipal solid waste incineration fly ash used as fine aggregates substitution

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2099855 | Received 07 Mar 2022, Accepted 05 Jul 2022, Published online: 28 Jul 2022

References

  • AASHTO M 323, 2017. Standard specification for Superpave Volumetric Mix Design.
  • AASHTO T 342, 2019. Standard method of test for determining the dynamic modulus of Hot Mix Asphalt (HMA).
  • Abukhettala, M., 2016. Use of recycled materials in road construction. In: Proceedings of the 2nd International conference on civil, structural and transportation engineering (ICCSTE’16)5-6 May 2016Ottawa, Canada.
  • Aguiar-Moya, J. P., and Prozzi, J. A, 2011. Effect of field variability of design inputs on the MEPDG (No. 11-1202).
  • Amirkhanian, A. N., Xiao, F., and Amirkhanian, S. N, 2011. Evaluation of high temperature rheological characteristics of asphalt binder with carbon nano particles. Journal of Testing and Evaluation, 39 (4), 1. doi:10.1520/JTE103133.
  • Arabani, M., and Azarhoosh, A.R, 2012. The effect of recycled concrete aggregate and steel slag on the dynamic properties of asphalt mixtures. Construction and Building Materials, 14 (6), 531–539. doi:10.1080/10298436.2012.747685.
  • Asi, I., and Abdullah, A, 2005. Effect of Jordanian oil shale fly ash on asphalt mixes. Journal of Materials in Civil Engineering, 17 (5), 553–559. doi:10.1061/(ASCE)08991561(2005)17:5(553).
  • ASTM C618, 2019. Standard specification for coal fly ash and raw or calcined natural pozzolan for use as mineral admixture in concrete.
  • Ayilara, M.S., et al., 2020. Waste management through composting: Challenges and potentials. Sustainability, 12 (11), 4456. doi:10.3390/su12114456.
  • Baalbaki, O., et al., 2018. Properties of concrete made of fine aggregates partially replaced by incinerated municipal solid waste bottom ash. In: Proceedings of the 3rd International conference on bio-based building materials, 26-28 June 2018. Belfast, United Kingdom.
  • Beale, J.M., and You, Z, 2010. The mechanical properties of asphalt mixtures with recycled concrete aggregates. Construction and Building Materials, 24 (3), 230–235. doi:10.1016/j.conbuildmat.2009.08.046.
  • Biligiri, K.P., 2008. Asphalt mixtures’ properties indicative of tire/pavement noise. Thesis (PhD). Arizona State University.
  • Biligiri, K.P., Kaloush, K., and Uzan, J., 2010. Evaluation of asphalt mixtures’ viscoelastic properties using phase angle relationships. International Journal of Pavement Engineering, 11, 143–152. doi:10.1080/10298430903033354.
  • Booij, H.C., and Thoone, G.P.J.M, 1982. Generalization of kramers-kronig transforms and some approximations of relations between viscoelastic quantities. Rheologica Acta, 21, 15–24. doi:10.1007/BF01520701.
  • Charbaji, M., et al., 2018a. Processing of incinerated municipal solid waste fly ash for use in concrete. International Journal of Civil Engineering and Technology, 9, 1853–1864.
  • Charbaji, M., et al., 2018b. Characterization of fly ash originated from lebanese municipal solid waste plant. In: Proceedings of the international congress on engineering and architecture, 14-16 November 2018. Alanya, Turkey.
  • Chehab, G.R, 2002. Characterization of asphalt concrete in tension using a viscoelastoplastic model. Doctoral Dissertation. North Carolina State University.
  • Chehab, G. R., et al., 2003. Characterization of asphalt concrete in uniaxial tension using a viscoelastoplastic continuum damage model (with discussion). Journal of the Association of Asphalt Paving Technologists, 72, 315–355.
  • Chehab, G. R., and Kim, Y. R, 2009. Interrelationships among asphalt concrete stiffnesses. Modeling of Asphalt Concrete, 139–160.
  • Churchill, E.V., and Serji, N.A, 1999. Coal ash utilization in Asphalt Concrete Mixtures. Journal of Materials in Civil Engineering, 11 (4), 295–301. doi:10.1061/(asce)0899-1561(1999)11:4(295).
  • Fei, F., et al., 2018. Mechanical biological treatment of municipal solid waste: Energy efficiency, environmental impact and economic feasibility analysis. Journal of Cleaner Production, doi:10.1016/j.jclepro.2018.01.060.
  • Gedafa, B., and Suleiman, N., 2018. Investigating the use of fly ash for sustainable asphalt pavements. Thesis (PhD). University of North Dakota.
  • Hadidi, L.A., et al., 2020. Deploying municipal solid waste management 3R-WTE framework in Saudi Arabia: Challenges and future. Sustainability, 12 (14), 5711. doi:10.3390/su12145711.
  • Hassan, H.F., and Al-Shamsi, K, 2010. Characterisation of asphalt mixes containing MSW ash using the dynamic modulus |E*| test. International Journal of Pavement Engineering, 11 (6), 575–582. doi:10.1080/10298436.2010.501865.
  • Heukelom, W., and Klomp, A. J. G, 1964. Road design and dynamic loading. Journal of Association of Asphalt Paving Technologists, 33, 92–125.
  • Joumblat, R. A., et al., 2022b. Investigation of using municipal solid waste incineration fly ash as alternative aggregates replacement in hot mix asphalt. Road Materials and Pavement Design, 1–20. doi:10.1080/14680629.2022.2071756.
  • Joumblat, R., Al Basiouni Al Masri, Z., and Elkordi, A., 2022a. Dynamic modulus and phase angle of asphalt concrete mixtures containing municipal solid waste incinerated fly ash as mineral filler substitution. International Journal of Pavement Research and Technology, 1–21. doi:10.1007/s42947-022-00190-x.
  • Kamaruddin, M.A., et al., 2017. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environmental Science and Pollution Research, doi:10.1007/s11356-017-0303-9.
  • Kassem, H. A., and Chehab, G. R, 2021. Characterisation of the mechanical performance of asphalt concrete mixtures with selected WMA additives. International Journal of Pavement Engineering, 22 (5), 625–642. doi:10.1080/10298436.2019.1632452.
  • Kassem, H. A., Najjar, S., & Chehab, G. R. 2017. Inherent variability in the parameters describing the linear viscoelastic response of asphalt concrete. In Geotechnical frontiers 2017, 291-301. doi:10.1061/9780784480441.031
  • Lee, S. T, 2009. Influence of recycled fine aggregates on the resistance of mortars to magnesium sulfate attack. Waste Management, 29 (8), 2385–2391. doi:10.1016/j.wasman.2009.04.002.
  • Levaggi, L., et al., 2020. Waste-to-energy in the EU: The effects of plant ownership, waste mobility, and decentralization on environmental outcomes and welfare. Sustainability, 12 (14), 5743. doi:10.3390/su12145743.
  • Li, X, 2008. Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycled aggregate concrete. Resources, Conservation and Recycling, 53 (1–2), 36–44. doi:10.1016/j.resconrec.2008.09.006.
  • Luo, R., and Lytton, R. L, 2010. Characterization of the tensile viscoelastic properties of an undamaged asphalt mixture. Journal of Transportation Engineering, 136 (3), 173–180. doi:10.1061/(ASCE)TE.1943-5436.0000083.
  • Martinho, F.C.G., Pixado-Santos, L.G., and Capitão, S.D, 2018. Feasibility assessment of the use of recycled aggregates for asphalt mixtures. Sustainability, 10 (6), doi:10.3390/su10061737.
  • Mun, S., Chehab, G. R., and Kim, Y. R, 2007. Determination of time-domain viscoelastic functions using optimized interconversion techniques. Road Materials and Pavement Design, 8 (2), 351–365. doi:10.1080/14680629.2007.9690078.
  • Naik, A. K., and Biligiri, K. P, 2015. Predictive models to estimate phase angle of asphalt mixtures. Journal of Materials in Civil Engineering, 27 (8), 04014235. doi:10.1061/(ASCE)MT.1943-5533.0001197.
  • Nemati, R., and Dave, E.V, 2018. Nominal property based predictive models for asphalt mixture complex modulus (dynamic modulus and phase angle). Construction and Building Materials, 158, 308–319. doi:10.1016/j.conbuildmat.2017.09.144.
  • Nguyen, Q. T., Di Benedetto, H., and Sauzéat, C., 2015. Linear and nonlinear viscoelastic behaviour of bituminous mixtures. Materials and Structures, 48 (7), 2339–2351. doi:10.1617/s11527-014-0316-5.
  • Nguyen, D. T., and Le, V. P, 2022. Determining optimum fly ash content for stabilized subbase materials in road pavements. Australian Journal of Civil Engineering, 20 (1), 46–55. doi:10.1080/14488353.2021.1905250.
  • Oshone, M., et al., 2017. Prediction of phase angles from dynamic modulus data and implications for cracking performance evaluation. Road Materials and Pavement Design, 18 (sup4), 491–513. doi:10.1080/14680629.2017.1389086.
  • Paul, D., Suresh, M., and Pal, M, 2021. Utilization of fly ash and glass powder as fillers in steel slag asphalt mixtures. Case Studies In Construction Materials, 15 (12), e00672. doi:10.1016/j.cscm.2021.e00672.
  • Pellinen, T. K., and Witczak, M. W, 2002. Use of stiffness of hot-mix asphalt as a simple performance test. Transportation Research Record: Journal of the Transportation Research Board, 1789 (1), 80–90. doi:10.3141/1789-09.
  • Pereira, T. de S., and Fernandino, G., 2019. Evaluation of solid waste management sustainability of a coastal municipality from northeastern Brazil. Ocean and Coastal Management, doi:10.1016/j.ocecoaman.2019.104839.
  • Rahman, A. S. M. A., Faisal, H. M., and Tarefder, R. A, 2015. Application of a numerical interconversion technique to determine the effect of aging on linear viscoelastic material functions of asphalt concrete (No. 15-5672).
  • Rahman, A.S.M.A., and Tarefder, R.A, 2016. Dynamic modulus and phase angle of warm-mix versus hot-mix asphalt concrete. Construction and Building Materials, 126, 434–441. doi:10.1016/j.conbuildmat.2016.09.068.
  • Risdanareni, P., et al., 2017. Chemical and physical characterization of fly ash as geopolymer material. MATEC Web of Conferences, 97, 1–8. Article ID: 01031.
  • Romeo, E., et al., 2018. Reuse of stabilized municipal solid waste incinerator fly ash in asphalt mixtures. Journal of Materials in Civil Engineering, 30 (8), doi:10.1061/(ASCE)MT.1943-5533.0002347.
  • Shields, D. H., Zeng, M., and Kwok, R, 1998. Nonlinear viscoelastic behavior of asphalt concrete in stress relaxation. Journal of the Association of Asphalt Paving Technologists, 67, 358–400.
  • Tapkin, S, 2008. Mechanical evaluation of asphalt-aggregate mixtures prepared with fly ash as a filler replacement. Canadian Journal of Civil Engineering, 35, 27–40. doi:10.1139/L07-082.
  • Tay, J., and Goh, A.T.C, 1991. Engineering properties of incinerator residue. Journal of Environmental Engineering, doi:10.1061/(ASCE)0733-9372(1991)117:2(224).
  • Uzan, J., and Levenberg, E, 2007. Advanced testing and characterization of asphalt concrete materials in tension. International Journal of Geomechanics, 7 (2), 158–165. doi:10.1061/(ASCE)1532-3641(2007)7:2(158).
  • Van der Poel, C., 1955. Time and temperature effects on the deformation of asphaltic bitumens and bitumen-mineral mixtures. Society of Petroleum Engineers Journal, 11, 47–53.
  • Voběrková, S., et al., 2017. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Management, 61, 157–164. doi:10.1016/j.wasman.2016.12.039.
  • Wang, Y. D., Keshavarzi, B., and Kim, Y. R, 2018. Fatigue performance prediction of asphalt pavements with FlexPAVETM, the S-VECD model, and DR failure criterion. Transportation Research Record: Journal of the Transportation Research Board, 2672 (40), 217–227.
  • Woszuk, A., Bandura, L., and Franus, W, 2019. Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. Journal of Cleaner Production, 235, 493–502. doi:10.1016/j.jclepro.2019.06.353.
  • Yan, K., et al., 2019. Research on properties of bitumen mortar containing municipal solid waste incineration fly ash. Construction and Building Materials, 218, 657–666. doi:10.1016/j.conbuildmat.2019.05.151.
  • Yang, X., and You, Z, 2015. New predictive equations for dynamic modulus and phase angle using a nonlinear least-squares regression model. Journal of Materials in Civil Engineering, 27 (3), doi:10.1061/(ASCE)MT.1943-5533.0001070.
  • Zhang, Y., Luo, R., and Lytton, R. L, 2012. Anisotropic viscoelastic properties of undamaged asphalt mixtures. Journal of Transportation Engineering, 138 (1), 75–89. doi:10.1061/(ASCE)TE.1943-5436.0000302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.