151
Views
2
CrossRef citations to date
0
Altmetric
Research Article

An advanced experimental investigation of size effect on flexural fatigue behaviour of cement-bound granular materials

ORCID Icon & ORCID Icon
Article: 2128351 | Received 17 Mar 2022, Accepted 12 Sep 2022, Published online: 30 Sep 2022

References

  • AS 1012.11, 2000. Methods of testing concrete−method 11: determination of the modulus of rupture. Sydney, Australia: Standards Australia.
  • AS 1289.5.2.1, 2003. Methods of testing soils for engineering purposes−method 5.2.1: soil compaction and density tests−determination of the dry density or moisture content relation of a soil using modified compactive effort. Sydney, Australia: Standards Australia.
  • ASTM C78-02, 2002. Standard test method for flexural strength of concrete (using simple beam with third-point loading). West Conshohocken, PA: ASTM International.
  • ASTM D1632-17, 2017. Standard practice for making and curing soil-cement compression and flexure test specimens in the laboratory. West Conshohocken, PA: ASTM International.
  • Austroads, 2008. The development and evaluation of protocols for the laboratory characterisation of cemented materials, AP-T101/08, Austroads, Sydney, Australia.
  • Austroads, 2010. Cost effective structural treatments for rural highways: cemented materials, Austroads Technical Report, Austroads, Sydney.
  • Austroads, 2012. Guide to pavement technology−Part 2: pavement structural design, AGPT02-12, Austroads, Sydney, Australia.
  • Balay, J.M., et al., 2012. Adaptation of the French pavement design to countries in South America. In: Congrès 8eme Jornadas International des Asfalto, France, 14.
  • Bažant, Z.P., 1984. Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics, 110 (4), 518–535. doi:10.1061/(ASCE)0733-9399(1984)110:4(518).
  • Bažant, Z., and Li, Z., 1995. Modulus of rupture: size effect due to fracture initiation in boundary layer. Journal of Structural Engineering, 121 (4), 739–746. doi:10.1061/(ASCE)0733-9445(1995)121:4(739).
  • Bažant, Z.P., and Planas, J., 1998. Fracture and size effect in concrete and other quasibrittle materials. London, UK: CRC Press.
  • Bažant, Z.P., and Schell, W.F., 1993. Fatigue fracture of high-strength concrete and size effect. ACI Materials Journal, 90 (5), 472–478. doi:10.14359/3880.
  • Bažant, Z., and Xu, K., 1991. Size effect in fatigue fracture of concrete. ACI Materials Journal, 88 (4), 390–399. doi:10.14359/1786.
  • Brake, N.A., Allahdadi, H., and Adam, F., 2016. Flexural strength and fracture size effects of pervious concrete. Construction and Building Materials, 113, 536–543. doi:10.1016/j.conbuildmat.2016.03.045.
  • BS EN 12390-5:2009, 2009. Testing hardened concrete – Part 5: flexural strength of test specimens. London, UK: British Standards Institution (BSI).
  • BS EN 12504-4:2004 (E), 2004. Testing concrete – Part 4: determination of ultrasonic pulse velocity. London, UK: British Standards Institution (BSI).
  • Bullock, R.E., and Whitehurst, E.A., 1959. Effect of certain variables on pulse velocities through concrete. Highway Research Board Bulletin, 206, 37–41.
  • CIRCLY, 2012. 5: software reference manual, Mincad Systems (MS) Pty Ltd, Richmond South, Victoria, Australia.
  • Collins, I., and Boulbibane, M., 2000. Geomechanical analysis of unbound pavements based on shakedown theory. Journal of Geotechnical and Geoenvironmental Engineering, 126 (1), 50–59. doi:10.1061/(ASCE)1090-0241(2000)126:1(50). ).
  • Corté, J.F., and Goux, M.T., 1996. Design of pavement structures: the French technical guide. Transportation Research Record: Journal of the Transportation Research Board, 1539, 116–124. doi:10.3141/1539-16.
  • Denneman, E., 2011. Fracture in high performance fibre reinforced concrete pavement materials. Pretoria, South Africa: University of Pretoria. http://upetd.up.ac.za/thesis/available/etd-10122011-170158/.
  • Gnanendran, C.T., and Paul, D.K., 2016. Fatigue characterization of lightly cementitiously stabilized granular base materials using flexural testing. Journal of Materials in Civil Engineering, 28 (9), doi:10.1061/(ASCE)MT.1943-5533.0001598.
  • Heilmann, H.G., 1976. Tensile stress and strain in unreinforced Concrete sections with eccentric load, p. 269.
  • I.S. EN 12390-5:2009, 2009. Testing hardened concrete – Part 5: flexural strength of test specimens. Dublin, Ireland: National Standards Authority of Ireland (NSAI).
  • Karihaloo, B.L., Abdalla, H.M., and Xiao, Q.Z., 2003. Size effect in concrete beams. Engineering Fracture Mechanics, 70 (7), 979–993. doi:10.1016/S0013-7944(02)00161-3.
  • Mandal, T., 2013. Fatigue behavior and modulus growth of cementitiously stabilized pavement layers. Wisconsin, USA: University of Wisconsin-Madison.
  • National Cooperative Highway Research Program (NCHRP), 2004. Guide for mechanistic-empirical design of new and rehabilitated pavement structures‒part 3 design analysis‒chapter 3: design of new and reconstructed flexible pavements. Washington, DC: National Cooperative Highway Research Program (NCHRP).
  • Pacheco-Torres, R., et al., 2018. Fatigue performance of waste rubber concrete for rigid road pavements. Construction and Building Materials, 176, 539–548. doi:10.1016/j.conbuildmat.2018.05.030.
  • SANS 5864:2006, 2006. South African national standard: concrete tests – flexural strength of hardened concrete, South African bureau of standards (SABS). South Africa: Pretoria.
  • Sounthararajah, A., et al., 2016a. Effect of cement on the engineering properties of pavement materials. www.scientific.net/MSF.866.31.
  • Sounthararajah, A., et al., 2016b. Flexural properties of cemented granular materials for pavement design, In: A. Chabot, W.G. Buttlar, E.V. Dave, C. Petit, G. Tebaldi eds. 8th RILEM international conference on mechanisms of cracking and debonding in pavements, Nantes, France: Springer Netherlands, 403–409. doi:10.1007/978-94-024-0867-6_56.
  • Sounthararajah, A., et al., 2017. Evaluation of flexural behaviour of cemented pavement material beams using distributed fibre optic sensors. Construction and Building Materials, 156, 965–975. doi:10.1016/j.conbuildmat.2017.09.027.
  • Sounthararajah, A., et al., 2018. Early-age fatigue damage assessment of cement-treated bases under repetitive heavy traffic loading. Journal of Materials in Civil Engineering, 30 (6), 04018079. doi:10.1061/(ASCE)MT.1943-5533.0002250.
  • Sounthararajah, A., 2018. Fatigue damage characterisation of cement-bound granular materials for pavement design. Australia: Monash University, 415. doi:10.26180/5b6a3ff57b221.
  • Sounthararajah, A., et al., 2019. Experimental and numerical investigation of flexural behavior of cemented granular materials. Journal of Materials in Civil Engineering, 31 (3), 06018030. doi:10.1061/(ASCE)MT.1943-5533.0002630.
  • Tang, T., Shah, S.P., and Ouyang, C., 1992. Fracture mechanics and size effect of concrete in tension. Journal of Structural Engineering, 118 (11), 3169–3185. doi:10.1061/(ASCE)0733-9445(1992)118:11(3169).
  • Theyse, H.L., De Beer, M., and Rust, F.C., 1996. Overview of the South African mechanistic pavement design analysis method. Transp. Res. Rec, 1539, 12. http://hdl.handle.net/10204/1646.
  • Wen, H., et al., 2014. Characterization of cementitiously stabilized layers for use in pavement design and analysis, National Cooperative Highway Research Program (NCHRP) report 789. Washington, DC: Transportation Research Board.
  • Yeo, R.E.Y., 2012. The performance of cemented pavement materials under heavy axle loading. Australia: Monash University. 262. doi:10.4225/03/58a257968108e.
  • Yoo, D.-Y., et al., 2016. Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams. Construction and Building Materials, 121, 676–685. doi:10.1016/j.conbuildmat.2016.06.040.
  • Zhang, J., Li, V., and Stang, H., 2001. Size effect on fatigue in bending of concrete. Journal of Materials in Civil Engineering, 13 (6), 446–453. doi:10.1061/(ASCE)0899-1561(2001)13:6(446).
  • Zhou, F.P., Balendran, R.V., and Jeary, A.P., 1998. Size effect on flexural, splitting tensile, and torsional strengths of high-strength concrete. Cement and Concrete Research, 28 (12), 1725–1736. doi:10.1016/S0008-8846(98)00157-4.
  • Zi, G., Kim, J., and Bažant, Z.P., 2014. Size effect on biaxial flexural strength of concrete. ACI Materials Journal, 111 (3), 319–326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.