237
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Novel hybrid machine learning models including support vector machine with meta-heuristic algorithms in predicting unconfined compressive strength of organic soils stabilised with cement and lime

, &
Article: 2136374 | Received 11 Mar 2022, Accepted 10 Oct 2022, Published online: 29 Oct 2022

References

  • Bishop, C. M., 2006. Pattern recognition and machine learning, 1st ed. Corr. 2nd printing 2011 édition. New York: Springer-Verlag New York Inc., 2011.
  • Blanke, Simon. 2019. Hyperactive: An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. [online]. Available from: https://github.com/SimonBlanke.
  • Brownlee, J. 2016. Machine learning mastery with Python: Understand your data, create accurate models and work projects end-to-end.
  • Burges, C. J. C., Jun. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2 (2), 121–167. doi: 10.1023/A:1009715923555.
  • Cherkassky, V., and Mulier, F. M., 2007. Statistical learning theory. In: Learning from data: concepts, theory, and methods. Hoboken, New Jersey: IEEE, pp. 99–150. doi:10.1002/9780470140529.ch4.
  • Cortes, C., and Vapnik, V., Sep. 1995. Support-vector networks. Machine Learning, 20 (3), 273–297. doi: 10.1007/BF00994018.
  • Das, S. K., et al., Dec. 2011. Machine learning techniques applied to prediction of residual strength of clay. Central European Journal of Geosciences, 3 (4), 449–461. doi: 10.2478/s13533-011-0043-1.
  • Du, C., et al., 2021. The influence of organic matter on the strength development of cement-stabilized marine soft clay. Marine Georesources & Geotechnology, 39 (8), 983–993. doi: 10.1080/1064119X.2020.1792593.
  • Eberhart, R., and Kennedy, J. 1995. A new optimizer using particle swarm theory. In: MHS’95. proceedings of the sixth international symposium on micro machine and human science, pp. 39–43. doi: 10.1109/MHS.1995.494215.
  • Elbaz, K., et al., Feb. 2021. Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network. Engineering, 7 (2), 238–251. doi: 10.1016/j.eng.2020.02.016.
  • Elbaz, K., et al., May 2022. Deep learning analysis for energy consumption of shield tunneling machine drive system. Tunnelling and Underground Space Technology, 123, 104405. doi: 10.1016/j.tust.2022.104405.
  • Friedman, J. H., Oct. 2001. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29 (5), 1189–1232. doi: 10.1214/aos/1013203451.
  • Gajurel, A., et al. 2021. Machine learning methods to map stabilizer effectiveness based on common soil properties. Transportation Geotechnics, 27, 100506. doi: 10.1016/j.trgeo.2020.100506.
  • Hensley, M. J. 2022. “Investigation of the Performance Under Traffic of Eight Roadways Constructed with Portland Cement Stabilized Bases,” Oct. 1966, Accessed 4 March 2022]. [Online]. Available from: https://trid.trb.org/view.aspx?id=1333152.
  • Heshmati, A. A., et al., 2009. “A Radial Basis Function Neural Network Approach for Compressive Strength Prediction of Stabilized Soil,” presented at the GeoHunan International Conference: Challenges and Recent Advances in Pavement Technologies and Transportation Geotechnics American Society of Civil Engineers Asphalt Institute Central South University, China Federal Highway Administration Transportation Research Board Texas Transportation Institute Texas Department of Transportation Chongqing Jiaotong University, China Deep Foundation Institute Hunan University International Society for Asphalt Pavements Jiangsu Transportation Research Institute Korea Institute of Construction Technology Korean Society of Road Engineers Chinese Society of Pavement Engineering, 2009 [online]. Available from: https://trid.trb.org/view/900133 [Accessed 4 March 2022].
  • Heshmati, R. A. A., et al., Apr. 2012. “A Radial Basis Function Neural Network Approach for Compressive Strength Prediction of Stabilized Soil,” pp. 147–153, doi: 10.1061/41043(350)20.
  • Jiang, J., and Cao, L., A hybrid simulated annealing algorithm for three-dimensional multi-bin packing problems. In: 2012 international conference on systems and informatics (ICSAI2012)May 2012, pp. 1078–1082. doi:10.1109/ICSAI.2012.6223220
  • Kamon, M., Tomohisa, S., and Sawa, K., 1989. On stabilization of hedoro by using cement group hardening materials. Journal of the Society of Materials Science, Japan, 38 (432), 1092–1097. doi: 10.2472/jsms.38.1092.
  • Kamran, M., Jul. 2021. A state of the art Catboost-based T-distributed stochastic neighbor embedding technique to predict back-break at Dewan cement limestone quarry. Journal of Mining and Environment, 12 (3), 679–691. doi: 10.22044/jme.2021.11222.2104.
  • Khan, S. Z., et al., Jan. 2016. Prediction of the residual strength of clay using functional networks. Geoscience Frontiers, 7 (1), 67–74. doi: 10.1016/j.gsf.2014.12.008.
  • Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., 1987. Optimization by simulated annealing. In: Readings in computer vision in M. A. Fischler and O. Firschein, eds. San Francisco, CA: Morgan Kaufmann, pp. 606–615. doi:10.1016/B978-0-08-051581-6.50059-3.
  • Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., May 1983. Optimization by simulated annealing. Science, 220 (4598), 671–680. doi: 10.1126/science.220.4598.671.
  • Koziel, S., and Yang, X.-S., 2011. Computational optimization, methods and algorithms. Berlin Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-20859-1.
  • Kuhn, M., and Johnson, K., 2013. Applied predictive modeling, 1st ed. New York: Springer Corr. 2nd printing 2018 edition.
  • Li, S., et al., Oct. 2020. Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323. doi: 10.1016/j.future.2020.03.055.
  • Lin, S.-S., et al., Jan. 2022. Time-series prediction of shield movement performance during tunneling based on hybrid model. Tunnelling and Underground Space Technology, 119, 104245. doi: 10.1016/j.tust.2021.104245.
  • Lundberg, S. M., and Lee, S.-I. 2021. “A Unified Approach to Interpreting Model Predictions,” in Advances in Neural Information Processing Systems, 2017, vol. 30. [Online]. Available from: https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html [Accessed 21 December 2021].
  • Ma, C., Chen, B., and Chen, L., Oct. 2016. Effect of organic matter on strength development of self-compacting earth-based construction stabilized with cement-based composites. Construction and Building Materials, 123, 414–423. doi: 10.1016/j.conbuildmat.2016.07.018.
  • Mozumder, R. A., and Laskar, A. I., Sep. 2015. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Computers and Geotechnics, 69, 291–300. doi: 10.1016/j.compgeo.2015.05.021.
  • Narendra, B. S., et al., Apr. 2006. Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study. Computers and Geotechnics, 33 (3), 196–208. doi: 10.1016/j.compgeo.2006.03.006.
  • Norvig, P., and Russell, S. J., 1995. Artificial intelligence :a modern approach. Upper Saddle River, New Jersey: Prentice Hall. [Online]. Available from: https://is.muni.cz/publication/134699/cs/Artificial-intelligence-a-modern-approach/Norvig-Jonathan-Russell.
  • Pedregosa, F., et al., 2011. Scikit-learn: machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
  • Rao, S., Raposeiro Da Silva, P., and De Brito, J., Oct. 2015. Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2). Construction and Building Materials, 96, 508–517. doi: 10.1016/j.conbuildmat.2015.08.049.
  • Refaeilzadeh, P., Tang, L., and Liu, H., Cross-Validation. In: Encyclopedia of database systems, L. Liu and M. T. Özsu, Eds. Boston, MA: Springer US, 2009, pp. 532–538. doi:10.1007/978-0-387-39940-9_565.
  • Rezazadeh Eidgahee, D., Rafiean, A. H., and Haddad, A., Mar. 2020. A novel formulation for the compressive strength of IBP-based geopolymer stabilized clayey soils using ANN and GMDH-NN approaches. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44 (1), 219–229. doi: 10.1007/s40996-019-00263-1.
  • Russell, S., and Norvig, P., 2009. Artificial intelligence: A modern approach, 3rd edition. Upper Saddle River: Pearson.
  • Shaban, W. M., et al., Dec. 2021. A multi-objective optimization algorithm for forecasting the compressive strength of RAC with pozzolanic materials. Journal of Cleaner Production, 327, 129355. doi: 10.1016/j.jclepro.2021.129355.
  • Shaban, W. M., et al., Jun. 2021. Fuzzy-metaheuristic ensembles for predicting the compressive strength of brick aggregate concrete. Resources, Conservation and Recycling, 169, 105443. doi: 10.1016/j.resconrec.2021.105443.
  • Sharma, L. K., and Singh, T. N., Jan. 2018. Regression-based models for the prediction of unconfined compressive strength of artificially structured soil. Engineering With Computers, 34 (1), 175–186. doi: 10.1007/s00366-017-0528-8.
  • Shen, S.-L., et al., Apr. 2022. Real-time prediction of shield moving trajectory during tunnelling. Acta Geotechnica, 17 (4), 1533–1549. doi: 10.1007/s11440-022-01461-4.
  • Sihag, P., Suthar, M., and Mohanty, S., Jun. 2021. Estimation of UCS-FT of dispersive soil stabilized with Fly Ash, cement clinker and GGBS by artificial intelligence. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45 (2), 901–912. doi: 10.1007/s40996-019-00329-0.
  • Smola, A. J., and Schölkopf, B. 2004. A tutorial on support vector regression. Statistics and Computing, 14 (3), 199–222. doi: 10.1023/B:STCO.0000035301.49549.88.
  • Smola, A. J., Schölkopf, B., and Müller, K.-R., Jun. 1998. The connection between regularization operators and support vector kernels. Neural Networks, 11 (4), 637–649. doi: 10.1016/S0893-6080(98)00032-X.
  • Soleimani, S., et al., Jan. 2018. New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming. Measurement, 113, 99–107. doi: 10.1016/j.measurement.2017.08.043.
  • Štrumbelj, E., and Kononenko, I., Dec. 2014. Explaining prediction models and individual predictions with feature contributions. Knowledge And information Systems, 41 (3), 647–665. doi: 10.1007/s10115-013-0679-x.
  • Thieu, N. V. 2022.“Meta-Heuristic Algorithms using Python (MEALPY).” Aug. 11, 2022. [Online]. Available from: https://github.com/thieu1995/mealpy [Accessed 12 August 2022].
  • Tran, V. Q., Apr. 2022. Hybrid gradient boosting with meta-heuristic algorithms prediction of unconfined compressive strength of stabilized soil based on initial soil properties, mix design and effective compaction. Journal of Cleaner Production, 355, 131683. doi: 10.1016/j.jclepro.2022.131683.
  • Tran, V. Q., Mar. 2021. Compressive strength prediction of stabilized dredged sediments using artificial neural network. Advances in Civil Engineering, 2021, e6656084. doi: 10.1155/2021/6656084.
  • Tran, V. Q., and Nguyen, L. Q., Jan. 2022. Using machine learning technique for designing reinforced lightweight soil. Journal of Intelligent & Fuzzy Systems, 43 (1), 1633–1650. doi: 10.3233/JIFS-212621.
  • Vapnik, V., and Vapnik, V. 2021. “The Natural of Statistical Learning Theory,” 1995, [Online]. Available from: http://www.science-open.com/document?vid=020bd3b7-3c58-4a3c-ad80-3f7c2d07b1bb [Accessed 24 August 2021].
  • Wang, H., et al., Apr. 2018. A correlation-based binary particle swarm optimization method for feature selection in human activity recognition. International Journal of Distributed Sensor Networks, 14 (4), 1–17. doi:10.1177/1550147718772785.
  • Wiens, T. S., et al., Apr. 2008. Three way k-fold cross-validation of resource selection functions. Ecological Modelling, 212 (3), 244–255. doi: 10.1016/j.ecolmodel.2007.10.005.
  • Yan, T., et al., Aug. 2022. Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm. Journal of Rock Mechanics and Geotechnical Engineering, 14 (4), 1292–1303. doi: 10.1016/j.jrmge.2022.03.002.
  • Yang, Y., et al., Sep. 2021. Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864. doi: 10.1016/j.eswa.2021.114864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.