673
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the structural response of two in-service thin flexible pavements under heavy vehicle loading during different seasons by built-in sensors

ORCID Icon & ORCID Icon
Article: 2138875 | Received 20 Nov 2021, Accepted 17 Oct 2022, Published online: 29 Oct 2022

References

  • Ahmed, A. and Erlingsson, S., 2013. Evaluation of permanent deformation models for unbound granular materials using accelerated pavement tests. Road Materials and Pavement Design, 14 (1), 178–195. doi:10.1080/14680629.2012.755936.
  • Ahmed, A. and Erlingsson, S., 2016. Viscoelastic response modelling of a pavement under moving load. Transportation Research Procedia, 14, 748–757. doi:10.1016/j.trpro.2016.05.343.
  • Ahmed, A.W. and Erlingsson, S., 2017. Numerical validation of viscoelastic responses of a pavement structure in a full-scale accelerated pavement test. International Journal of Pavement Engineering, 18 (1), 47–59. doi:10.1080/10298436.2015.1039003.
  • Al-Qadi, I.L., et al., 2004. The Virginia smart road: the impact of pavement instrumentation on understanding pavement performance. Journal of the Association of Asphalt Paving Technologists, 73 (3), 427–465.
  • Andrei, D., Witczak, M.W., and Houston, W.N., 2009. Resilient modulus predictive model for unbound pavement materials. In: Contemporary topics in ground modification, problem soils, and geo-support. 401–408. doi:10.1061/41023(337)51.
  • ARA Inc., 2004. Guide for mechanistic–empirical design of new and rehabilitated pavement structures. Final Rep., NCHRP Project 1-37A. Available from: https://onlinepubs.trb.org/onlinepubs/archive/mepdg/guide.htm.
  • Baumgaertel, M. and Winter, H.H., 1989. Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheologica Acta, 28 (6), 511–519. doi:10.1007/BF01332922.
  • Blanc, J., et al., 2019. Monitoring of an experimental motorway section. Road Materials and Pavement Design, 20 (1), 74–89. doi:10.1080/14680629.2017.1374997.
  • Burmister, D.M., 1945. The general theory of stresses and displacements in layered systems. I. Journal of Applied Physics, 16 (2), 89–94. doi:10.1063/1.1707558.
  • Christidis, P. and Leduc, G., 2009. Longer and heavier vehicles for freight transport. JRC 52005. European Commission, Joint Research Centre, Institute for Prospective Technological Studies, 1–40. Available from: https://ec.europa.eu/transport/sites/transport/files/modes/road/events/doc/2009_06_24/2009_jrc52005.pdf.
  • Doré, G. and Zubeck, H.K., 2009. Cold regions pavement engineering. Reston, VA: New York: ASCE Press; McGraw-Hill. 978-0-07-160088-0.
  • Duong, N.S., et al., 2019. Continuous strain monitoring of an instrumented pavement section. International Journal of Pavement Engineering, 20 (12), 1435–1450. doi:10.1080/10298436.2018.1432859.
  • Erlingsson, S., 2010. Impact of water on the response and performance of a pavement structure in an accelerated test. Road Materials and Pavement Design, 11 (4), 863–880. doi:10.1080/14680629.2010.9690310.
  • Erlingsson, S., 2012. Rutting development in a flexible pavement structure. Road Materials and Pavement Design, 13 (2), 218–234. doi:10.1080/14680629.2012.682383.
  • Erlingsson, S. and Ahmed, A., 2013. Fast layered elastic response program for the analysis of flexible pavement structures. Road Materials and Pavement Design, 14 (1), 196–210. doi:10.1080/14680629.2012.757558.
  • Erlingsson, S., Rahman, M.S., and Ahmed, A., 2018. Impact of longer and heavier vehicles on the performance of asphalt pavements: A laboratory study. In: A. Loizos, I.L. Al-Qadi, and A. (Tom) Scarpas, eds. Bearing capacity of roads, railways and airfields. 1st ed. CRC Press, 483–490. doi:10.1201/9781315100333-63.
  • Erlingsson, S., Rahman, S., and Salour, F., 2017. Characteristic of unbound granular materials and subgrades based on multi stage RLT testing. Transportation Geotechnics, 13, 28–42. doi:10.1016/j.trgeo.2017.08.009.
  • Erlingsson, S. and Saliko, D., 2020. Correlating air freezing index and frost penetration depth – a case study for Sweden. In: C. Raab, ed. Proceedings of the 9th international conference on maintenance and rehabilitation of pavements – Mairepav9. Vol. 76. Springer International Publishing, 847–857. doi:10.1007/978-3-030-48679-2_79
  • Fladvad, M. and Erlingsson, S., 2022. Modelling the response of large-size subbase materials tested under varying moisture conditions in a heavy vehicle simulator. Road Materials and Pavement Design, 23 (5), 1107–1128. doi:10.1080/14680629.2021.1883462.
  • Gkyrtis, K., Armeni, A., and Loizos, A., 2021. A mechanistic perspective for airfield pavements evaluation focusing on the asphalt layers’ behaviour. International Journal of Pavement Engineering, 1–14. doi:10.1080/10298436.2021.1995733.
  • Gusfeldt, K.H. and Dempwolff, K.R., 1967. Stress and strain measurements in experimental road sections under controlled loading conditions. 2nd international conference on the structural design of asphalt pavements. Ann Arbor, Michigan. 663–669.
  • Hicks, R.G. and Finn, F.N., 1970. Analysis of results from the dynamic measurements program on the San Diego test road. Association of Asphalt Paving Technologists, 39, 153–185. Available from: https://trid.trb.org/view/101320.
  • Huang, Y.H., 2004. Pavement analysis and design. 2nd ed Upper Saddle River, NJ: Pearson/Prentice Hall. 978-0-13-142473-9.
  • Irwin, L.H., 2002. Backcalculation: an overview and perspective. In: Pavement evaluation conference, 2002, Roanoke, VI.
  • Kim, J., 2011. General viscoelastic solutions for multilayered systems subjected to static and moving loads. Journal of Materials in Civil Engineering, 23 (7), 1007–1016. doi:10.1061/(ASCE)MT.1943-5533.0000270.
  • Knight, I., et al., 2008. Longer and/or longer and heavier goods vehicles (LHVs) – a study of the likely effects if permitted in the UK: final report. TRL Limited. Available from: http://data.parliament.uk/DepositedPapers/Files/DEP2008-1410/DEP2008-1410.pdf.
  • Leischner, S., et al., 2016. Design of thin surfaced asphalt pavements. Procedia Engineering, 143, 844–853. doi:10.1016/j.proeng.2016.06.138.
  • Lekarp, F., Isacsson, U., and Dawson, A., 2000. State of the Art. II: permanent strain response of unbound aggregates. Journal of Transportation Engineering, 126 (1), 76–83. doi:10.1061/(ASCE)0733-947X(2000)126:1(76).
  • Leong, E.C. and Rahardjo, H., 1997. Review of soil-water characteristic curve equations. Journal of Geotechnical and Geoenvironmental Engineering, 123 (12), 1106–1117.
  • Loulizi, A., Al-Qadi, I.L., and Elseifi, M., 2006. Difference between in situ flexible pavement measured and calculated stresses and strains. Journal of Transportation Engineering, 132 (7), 574–579.
  • Natanaelsson, K. and Eriksson, T., 2020. Regeringsuppdrag: Implementering av bärighetsklass 4. Trafikverket, TRV 2020/44448. In Swedish.
  • Ortega, A., et al., 2014. Are longer and heavier vehicles (LHVs) beneficial for society? A cost benefit analysis to evaluate their potential implementation in Spain. Transport Reviews, 34 (2), 150–168. doi:10.1080/01441647.2014.891161.
  • Pålsson, H., et al., 2017. Longer and heavier road freight vehicles in Sweden: effects on tonne- and vehicle-kilometres, CO2 and socio-economics. International Journal of Physical Distribution & Logistics Management, 47 (7), 603–622. doi:10.1108/IJPDLM-02-2017-0118.
  • Pereira, P. and Pais, J., 2017. Main flexible pavement and mix design methods in Europe and challenges for the development of an European method. Special Issue on Maintenance and Rehabilitation of Pavements, 4 (4), 316–346. doi:10.1016/j.jtte.2017.06.001.
  • Rahman, M.S. and Erlingsson, S., 2015. Predicting permanent deformation behaviour of unbound granular materials. International Journal of Pavement Engineering, 16 (7), 587–601. doi:10.1080/10298436.2014.943209.
  • Saevarsdottir, T. and Erlingsson, S., 2015. Modelling of responses and rutting profile of a flexible pavement structure in a heavy vehicle simulator test. Road Materials and Pavement Design, 16 (1), 1–18. doi:10.1080/14680629.2014.939698.
  • Saevarsdottir, T., Erlingsson, S., and Carlsson, H., 2016. Instrumentation and performance modelling of heavy vehicle simulator tests. International Journal of Pavement Engineering, 17 (2), 148–165. doi:10.1080/10298436.2014.972957.
  • Saliko, D. and Erlingsson, S., 2021. Damage investigation of thin flexible pavements to longer heavier vehicle loading through instrumented road sections and numerical calculations. Road Materials and Pavement Design, 22 (sup1), S575–S591. doi:10.1080/14680629.2021.1899964.
  • Salour, F., 2015. Moisture influence on structural behaviour of pavements: field and laboratory investigations. PhD thesis. Architecture and the Built Environment, KTH Royal Institute of Technology. Available from: https://www.diva-portal.org/smash/get/diva2:796833/SUMMARY01.pdf.
  • Salour, F. and Erlingsson, S., 2013a. Moisture-sensitive and stress-dependent behavior of unbound pavement materials from in situ falling weight deflectometer tests. Transportation Research Record: Journal of the Transportation Research Board, 2335 (1), 121–129. doi:10.3141/2335-13.
  • Salour, F. and Erlingsson, S., 2013b. Investigation of a pavement structural behaviour during spring thaw using falling weight deflectometer. Road Materials and Pavement Design, 14 (1), 141–158. doi:10.1080/14680629.2012.754600.
  • Sanchez Rodrigues, V., et al., 2015. The longer and heavier vehicle debate: a review of empirical evidence from Germany. Transportation Research Part D: Transport and Environment, 40, 114–131. doi:10.1016/j.trd.2015.08.003.
  • Simonsen, E. and Isacsson, U., 1999. Thaw weakening of pavement structures in cold regions. Cold Regions Science and Technology, 29 (2), 135–151. doi:10.1016/S0165-232X(99)00020-8.
  • Terrell, R.L. and Krukar, M., 1970. Evaluation of-test tracking pavements. Association of Asphalt Paving Technologists, 39, 273–296.
  • Tschoegl, N.W., 2012. The phenomenological theory of linear viscoelastic behavior: an introduction. Cham: Springer Science & Business Media.
  • Tseng, K.-H. and Lytton, R., 1989. Prediction of permanent deformation in flexible pavement materials. In: H. Schreuders and C. Marek, eds. Implication of aggregates in the design, construction, and performance of flexible pavements. ASTM International, 154–172. doi:10.1520/STP24562S.
  • Uzan, J., 1985. Characterization of granular materials. Transportation Research Board, 1022. Available from: http://onlinepubs.trb.org/Onlinepubs/trr/1985/1022/1022-007.pdf.