162
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mixing carbon nanotubes with asphalt binder through a foaming process toward high-performance warm mix asphalt (WMA)

, , , , , , ORCID Icon & show all
Article: 2149752 | Received 12 Mar 2022, Accepted 15 Nov 2022, Published online: 02 Dec 2022

References

  • Abdullah, M.E., et al., 2016. Engineering properties of asphalt binders containing nanoclay and chemical warm-mix asphalt additives. Construction and Building Materials, 112, 232–240. doi:10.1016/j.conbuildmat.2016.02.089.
  • Ameri, M., et al., 2016. Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes. Fatigue & Fracture of Engineering Materials & Structures, 39 (7), 896–906. doi:10.1111/ffe.12408.
  • Amin, I., et al., 2016. Laboratory evaluation of asphalt binder modified with carbon nanotubes for Egyptian climate. Construction and Building Materials, 121, 361–372. doi:10.1016/j.conbuildmat.2016.05.168.
  • Amirkhanian, A.N., Xiao, F., and Amirkhanian, S.N., 2011a. Characterization of unaged asphalt binder modified with carbon nano particles. International Journal of Pavement Research and Technology, 4 (5), 281–286.
  • Amirkhanian, A.N., Xiao, F., and Amirkhanian, S.N., 2011b. Evaluation of high temperature rheological characteristics of asphalt binder with carbon nano particles. Journal of Testing and Evaluation, 39 (4), 1–9.
  • Apeagyei, A.K, 2013. Evaluating foamed asphalt stability using acoustic emission techniques. Journal of Materials in Civil Engineering, 25 (9), 1291–1298. doi:10.1061/(ASCE)MT.1943-5533.0000665.
  • Arega, Z.A., et al., 2014. Characteristics of asphalt binders foamed in the laboratory to produce warm mix asphalt. Journal of Materials in Civil Engineering, 26 (11), 04014078, 1–10. doi:10.1061/(ASCE)MT.1943-5533.0000981.
  • Bai, J., and Allaoui, A., 2003. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Composites Part A: Applied Science and Manufacturing, 34 (8), 689–694. doi:10.1016/S1359-835X(03)00140-4.
  • Baughman, R.H., Zakhidov, A.A., and De Heer, W.A., 2002. Carbon nanotubes–the route toward applications. science, 297 (5582), 787–792.
  • Bower, N., et al., 2016. Evaluation of the performance of warm mix asphalt in Washington state. International Journal of Pavement Engineering, 17 (5), 423–434. doi:10.1080/10298436.2014.993199.
  • Brennen, M., et al., 1983. Laboratory investigation of the use of foamed asphalt for recycled bituminous pavements. Transportation Research Record, 911, 80–87.
  • Chowdhury, A., and Button, J.W., 2008. A review of warm mix asphalt. Texas Transportation Institute, the Texas A & M University System, College Station, Texas 77843-3135.
  • Cong, P., Xu, P., and Chen, S., 2014. Effects of carbon black on the anti aging, rheological and conductive properties of SBS/asphalt/carbon black composites. Construction and Building Materials, 52, 306–313. doi:10.1016/j.conbuildmat.2013.11.061.
  • De Heer, W.A, 2004. Nanotubes and the pursuit of applications. MRS Bulletin, 29 (4), 281–285. doi:10.1557/mrs2004.81.
  • Dinis-Almeida, M., and Afonso, M.L., 2015. Warm mix recycled asphalt–a sustainable solution. Journal of Cleaner Production, 107, 310–316. doi:10.1016/j.jclepro.2015.04.065.
  • Faramarzi, M., et al., 2015. Carbon nanotubes-modified asphalt binder: preparation and characterization. International Journal of Pavement Research & Technology, 8 (1), 29–37.
  • Hailesilassie, B.W., Hugener, M., and Partl, M.N., 2015. Influence of foaming water content on foam asphalt mixtures. Construction and Building Materials, 85, 65–77. doi:10.1016/j.conbuildmat.2015.03.071.
  • Hansen, K.R., Copeland, A., and Association, N.A.P, 2013. Annual asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2009-2012. National Asphalt Pavement Association.
  • Hasan, Z., et al., 2012. Evaluation of different conditions on the mixing bitumen and carbon nano-tubes. International Journal of Civil & Environmental Engineering IJCEE-IJENS, 12 (06), 53–59.
  • Hasan, M.R.M., You, Z., and Yang, X., 2017. A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Construction and Building Materials, 152, 115–133. doi:10.1016/j.conbuildmat.2017.06.135.
  • He, X., et al., 2019. Finite element simulation of self-heated pavement under different mechanical and thermal loading conditions. Road Materials and Pavement Design, 20 (8), 1807–1826. doi:10.1080/14680629.2018.1473282.
  • Jang, S.H., et al., 2017. Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture. Cement & Concrete Composites, 77, 49–59. doi:10.1016/j.cemconcomp.2016.12.003.
  • Jang, S.H., and Yin, H.M., 2015. Effective electrical conductivity of carbon nanotube-polymer composites: a simplified model and its validation. Materials Research Express, 2 (4), 045602, 1–11.
  • Jenkins, K.J., 2000. Mix design considerations for cold and half-warm bituminous mixes with emphasis of foamed bitumen. Stellenbosch: Stellenbosch University.
  • Jenkins, K., Van de Ven, M., and De Groot, J., 1999. Characterisation of foamed bitumen. in 7th Conference on asphalt pavements for Southern Africa.
  • Khattak, M.J., et al., 2012. The impact of carbon nano-fiber modification on asphalt binder rheology. Construction and Building Materials, 30, 257–264. doi:10.1016/j.conbuildmat.2011.12.022.
  • Kuna, K., Airey, G., and Thom, N., 2014. Laboratory mix design procedure for foamed bitumen mixtures. Transportation Research Record, 2444 (1), 1–10. doi:10.3141/2444-01.
  • Latifi, H., and Hayati, P., 2018. Evaluating the effects of the wet and simple processes for including carbon nanotube modifier in hot mix asphalt. Construction and Building Materials, 164, 326–336. doi:10.1016/j.conbuildmat.2017.12.237.
  • Li, J., et al., 2007. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Advanced Functional Materials, 17 (16), 3207–3215. doi:10.1002/adfm.200700065.
  • Li, R., et al., 2017. Developments of nano materials and technologies on asphalt materials–A review. Construction and Building Materials, 143, 633–648. doi:10.1016/j.conbuildmat.2017.03.158.
  • Mamun, A., Arifuzzaman, M., and Taha, R., 2018. Nano scale aging characterization of carbon nanotube modified asphalt binders. Proceedings of the Advances in Materials and Pavement Performance Prediction, 2018: p. 403-406.
  • Martinez-Arguelles, G., et al., 2014. Investigating physical and rheological properties of foamed bitumen. Construction and Building Materials, 72, 423–433. doi:10.1016/j.conbuildmat.2014.09.024.
  • Masson, J., Polomark, G., and Collins, P., 2002. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy & Fuels, 16 (2), 470–476. doi:10.1021/ef010233r.
  • Motlagh, A.A., et al., 2012. Bitumen modification using carbon nanotubes. World Applied Sciences Journal, 18 (4), 594–599.
  • Namutebi, M, 2011. Some aspects of foamed bitumen technology. KTH Royal Institute of Technology, SE-100 44 Stockholm.
  • Ozturk, H.I., 2013. Quantification of quality of foamed warm mix asphalt binders and mixtures. Michigan State University ProQuest Dissertations Publishing, 3563673, East Lansing, Michigan.
  • Ozturk, H.I., and Kutay, M.E., 2014. Sensitivity of nozzle-based foamed asphalt binder characteristics to foaming parameters. Transportation Research Record, 2444 (1), 120–129. doi:10.3141/2444-14.
  • Pan, P., et al., 2014. Influence of graphite on the thermal characteristics and anti-ageing properties of asphalt binder. Construction and Building Materials, 68, 220–226. doi:10.1016/j.conbuildmat.2014.06.069.
  • Saleh, M, 2006. Characterisation of foam bitumen quality and the mechanical properties of foam stabilised mixes.
  • Santagata, E., et al., 2012. Rheological characterization of bituminous binders modified with carbon nanotubes. Procedia-Social and Behavioral Sciences, 53, 546–555.
  • Santagata, E., et al., 2015. Fatigue properties of bituminous binders reinforced with carbon nanotubes. International Journal of Pavement Engineering, 16 (1), 80–90. doi:10.1080/10298436.2014.923099.
  • Schwartz, C.W., and Khosravifar, S., 2013. Design and evaluation of foamed asphalt base materials. Maryland: State Highway Administration. Office of Policy & Research.
  • Tahami, S.A., et al., 2019. The use of high content of fine crumb rubber in asphalt mixes using dry process. Construction and Building Materials, 222, 643–653. doi:10.1016/j.conbuildmat.2019.06.180.
  • Treacy, M.J., Ebbesen, T.W., and Gibson, J.M., 1996. Exceptionally high young's modulus observed for individual carbon nanotubes. nature, 381 (6584), 678–680.
  • Tyson, B.M., et al., 2011. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. Journal of Materials in Civil Engineering, 23 (7), 1028–1035. doi:10.1061/(ASCE)MT.1943-5533.0000266.
  • Vo, H.V., et al., 2017. Evaluation of asphalt mixture modified with graphite and carbon fibers for winter adaptation: thermal conductivity improvement. Journal of Materials in Civil Engineering, 29 (1), 04016176, 1–7. doi:10.1061/(ASCE)MT.1943-5533.0001675.
  • Wang, P., et al., 2017. Effect of multi-walled carbon nanotubes on the performance of styrene–butadiene–styrene copolymer modified asphalt. Materials and Structures, 50 (1), 1–11. doi:10.1617/s11527-016-0885-6.
  • Wielinski, J., Hand, A., and Rausch, D.M., 2009. Laboratory and field evaluations of foamed warm-mix asphalt projects. Transportation Research Record, 2126 (1), 125–131. doi:10.3141/2126-15.
  • Xiao, F., Amirkhanian, A.N., and Amirkhanian, S.N., 2011. Influence of carbon nanoparticles on the rheological characteristics of short-term aged asphalt binders. Journal of Materials in Civil Engineering, 23 (4), 423–431. doi:10.1061/(ASCE)MT.1943-5533.0000184.
  • Xie, X.-L., Mai, Y.-W., and Zhou, X.-P., 2005. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials Science and Engineering: R: Reports, 49 (4), 89–112. doi:10.1016/j.mser.2005.04.002.
  • You, Z., et al., 2011. Nanoclay-modified asphalt materials: preparation and characterization. Construction and Building Materials, 25 (2), 1072–1078. doi:10.1016/j.conbuildmat.2010.06.070.
  • Yu, A., et al., 2006. Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Applied Physics Letters, 89 (13), 133102, 1–3. doi:10.1063/1.2357580.
  • Yu, X., et al., 2022. Morphological, thermal, and mechanical properties of asphalt binders modified by graphene and carbon nanotubes. ASCE Journal of Materials in Civil Engineering, 34 (5), 04022047, 1–14. doi:10.1061/(ASCE)MT.1943-5533.0004183.
  • Yu, X., Liu, S., and Dong, F., 2016. Comparative assessment of rheological property characteristics for unfoamed and foamed asphalt binder. Construction and Building Materials, 122, 354–361. doi:10.1016/j.conbuildmat.2016.06.090.
  • Yum, S.G., Yin, H., and Jang, S.H., 2020. Toward multi-functional road surface design with the nanocomposite coating of carbon nanotube modified polyurethane: Lab-scale experiments. Nanomaterials, 10 (10), 1905, 1–7.
  • Zadshir, M., et al., 2018. Investigating bio-rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation. Construction and Building Materials, 190, 392–402. doi:10.1016/j.conbuildmat.2018.09.137.
  • Zhu, S., Chen, F., and Yin, H., 2017. Simulation and validation of asphalt foaming process for virtual experiments and optimisation of WMA production. Road Materials and Pavement Design, 18 (sup4), 144–164. doi:10.1080/14680629.2017.1389093.
  • Ziari, H., et al., 2018. Predicting rutting performance of carbon nano tube (CNT) asphalt binders using regression models and neural networks. Construction and Building Materials, 160, 415–426. doi:10.1016/j.conbuildmat.2017.11.071.
  • Ziari, H., and Moniri, A., 2019. Laboratory evaluation of the effect of synthetic polyolefin-glass fibers on performance properties of hot mix asphalt. Construction and Building Materials, 213, 459–468. doi:10.1016/j.conbuildmat.2019.04.084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.