155
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Measurement of pavement rutting trajectories on two-lane highway using the 3D line scanning laser system

ORCID Icon, , &
Article: 2149753 | Received 14 Jul 2022, Accepted 15 Nov 2022, Published online: 16 Dec 2022

References

  • Ai, C., and Tsai, Y., 2014. Automatic horizontal curve identification and measurement method using GPS data. Journal of Transportation Engineering, 141 (2), 04014078. DOI: 10.1061/(ASCE)TE.1943-5436.0000740.
  • Ben-Arieh, D., et al., 2004. Geometric modeling of highways using global positioning system data and B-Spline approximation. Journal of Transportation Engineering, 130 (5), 632–636. DOI: 10.1061/(ASCE)0733-947X(2004)130:5(632).
  • Bento, L. C., Bonnifait, P., and Nunes, U. J., 2019. Set-membership position estimation with GNSS pseudorange error mitigation using lane-boundary measurements. IEEE Transactions on Intelligent Transportation Systems, 20 (1), 185–194. DOI: 10.1109/TITS.2018.2808542.
  • Bosurgi, G., et al., 2022. An automatic pothole detection algorithm using pavement 3D data. International Journal of Pavement Engineering, in press, DOI: 10.1080/10298436.2022.2057978.
  • Choi, S. Y., and Lee, J. M., 2006. Applications of moving windows technique to autonomous vehicle navigation. Image and Vision Computing, 24 (2), 120–130. DOI: 10.1016/j.imavis.2005.09.016.
  • Deng, Z., et al., 2017. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (8), 3652–3664. DOI: 10.1109/JSTARS.2017.2694890.
  • Ding, S., et al., 2022. 3D imaging based pavement texture evaluation. International Journal of Pavement Engineering, in press, DOI: 10.1080/10298436.2022.2077942.
  • Ekblad, J., et al., 2021. Impact on rutting from introduction of increased axle loads in Finland. International Journal of Pavement Engineering, 22 (13), 1731–1743. DOI: 10.1080/10298436.2020.1721497.
  • Findley, D. J., Cunningham, C. M., and Hummer, J. E., 2011. Comparison of mobile and manual data collection for roadway components. Transportation Research Part C: Emerging Technology, 19 (3), 521–540. DOI: 10.1016/j.trc.2010.08.002.
  • Gao, R., et al., 2021. Small foreign metal objects detection in X-Ray images of clothing products using faster R-CNN and feature pyramid network. IEEE Transactions on Instrumentation and Measurement, 70, 1–11. DOI: 10.1109/TIM.2021.3077666.
  • Gungor, O.E., and Al-Qadi, I.L., 2022. Wander 2D: a flexible pavement design framework for autonomous and connected trucks. International Journal of Pavement Engineering, 23 (1), 121–136. DOI: 10.1080/10298436.2020.1735636.
  • Hanley, P. F., and Forkenbrock, D. J., 2005. Safety of passing longer combination vehicles on two-lane highways. Transportation Research Part A: Policy and Practice, 39 (1), 1–15. DOI: 10.1016/j.tra.2004.09.001.
  • Hong, Z., et al., 2018. Line-laser-based visual measurement for pavement 3D rut depth in driving state. Electronics Letters, 54 (20), 1172–1173. DOI: 10.1049/el.2018.5437.
  • Hong, Z., Ai, Q., and Chen, K., 2018. Line-laser-based visual measurement for pavement 3D rut depth in driving state. Electronics Letters, 54 (20), 1172–1173. DOI: 10.1049/el.2018.5437.
  • Hui, B., et al., 2018. Critical assessment of the impact of vehicle wandering on rut depth measurement accuracy using 13-point based lasers. Measurement, 123, 246–253. DOI: 10.1016/j.measurement.2018.03.069.
  • Imran, M., Hssan, Y. M., and Patterson, D., 2006. GPS-GIS-based procedure for tracking vehicle path on horizontal alignments. Computer-Aided Civil and Infrastructure Engineering, 12 (5), 383–394. DOI: 10.1111/j.1467-8667.2006.00444.x.
  • Ishikawa, K., et al., 2007. A mobile mapping system for precise road line localization using a single camera and 3D road model. Journal of Robotics and Mechatronics, 19 (2), 174–180. DOI: 10.20965/jrm.2007.p0174.
  • Kim, W., et al., 2018. Vehicle path prediction using yaw acceleration for adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 19 (12), 3818–3829. DOI: 10.1109/TITS.2018.2789482.
  • Li, L., Luo, W., and Wang, K. C. P., 2018. Lane marking detection and reconstruction with line-scan imaging data. Sensors, 18 (5), 1635. DOI: 10.3390/s18051635.
  • Luo, W., and Li, L., 2018. Automatic geometry measurement for curved ramps using inertial measurement unit and 3D LiDAR system. Automation in Construction, 94, 214–232. DOI: 10.1016/j.autcon.2018.07.004.
  • Luo, W., Li, L., and Wang, K. C.P., 2018. Automatic horizontal curve identification and measurement using mobile mapping systems (MMS). Journal of Surveying Engineering, 144 (4), 04018007. DOI: 10.1061/(ASCE)SU.1943-5428.0000257.
  • Luo, W., Liu, L., and Li, L., 2020. Measuring rutting dimension and lateral position using 3D line scanning laser and inertial measuring unit. Automation in Construction, 111, 103056. DOI: 10.1016/j.autcon.2019.103056.
  • Luo, W., Wang, K. C.P., and Li, L., 2019. Estimation of water film depth for rutting pavement using IMU and 3D laser imaging data. International Journal of Pavement Engineering, 20 (10), 1170–1181. DOI: 10.1080/10298436.2017.1394099.
  • Outay, F., Mengash, H. a., and Adnan, M., 2020. Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: recent advances and challenges. Transportation Research Part A: Policy and Practice, 141, 116–129. DOI: 10.1016/j.tra.2020.09.018.
  • Qiu, S., et al., 2018. A comprehensive system for AASHTO PP69-10-based pavement rut evaluation using 1-mm 3D pavement surface model. International Journal of Pavement Engineering, 19 (6), 489–501. DOI: 10.1080/10298436.2016.1176163.
  • Rasdorf, W., et al., 2012. Evaluation of GIS applications for horizontal curve data collection. Journal of Computing in Civil Engineering, 26 (2), 191–203. DOI: 10.1061/(ASCE)CP.1943-5487.0000127.
  • Saleeb, A., et al., 2005. Numerical simulation techniques for HMA rutting under loaded wheel tester. International Journal of Pavement Engineering, 6 (1), 57–66. DOI: 10.1080/10298430500068704.
  • Saleh, M., 2020. Modified wheel tracker as a potential replacement for the current conventional wheel trackers. International Journal of Pavement Engineering, 21 (1), 20–28. DOI: 10.1080/10298436.2018.1435880.
  • Siddharthan, R.V., et al., 2017. Investigation of impact of wheel wander on pavement performance. Road Materials and Pavement Design, 18 (2), 390–407. DOI: 10.1080/14680629.2016.1162730.
  • Tsai, Y., Wu, J., and Wang, Z., 2010. Horizontal roadway curvature computation algorithm using vision technology. Computer-Aided Civil and Infrastructure Engineering, 25 (2), 78–88. DOI: 10.1111/j.1467-8667.2009.00622.x.
  • Yeganeh, A., Vandoren, B., and Pirdavani, A., 2021. Impacts of load distribution and lane width on pavement rutting performance for automated vehicles. International Journal of Pavement Engineering, in press, DOI: 10.1080/10298436.2021.1935938.
  • Yeganeh, A., Vandoren, B., and Pirdavani, A., 2022. Pavement rutting performance analysis of automated vehicles: impacts of wander mode, lane width, and market penetration rate. International Journal of Pavement Engineering, in press, DOI: 10.1080/10298436.2022.2049264.
  • Zhai, Y., et al., 2021. Hybrid knowledge R-CNN for transmission line multifitting detection. IEEE Transactions on Instrumentation and Measurement, 70, 1–12. DOI: 10.1109/TIM.2021.3096600.
  • Zhang, D., et al., 2018. Automatic pavement defect detection using 3D laser profiling technology. Automation in Construction, 96, 350–365. DOI: 10.1016/j.autcon.2018.09.019.
  • Zhang, J., et al., 2018. Terahertz image detection with the improved faster region-based convolutional neural network. Sensors, 18 (7), 2327. DOI: 10.3390/s18072327.
  • Zhang, K., Zhang, Z., and Luo, Y., 2018. Inspection method and evaluation standard based on cylindrical core sample for rutting resistance of asphalt pavement. Measurement, 117, 241–251. DOI: 10.1016/j.measurement.2017.12.002.
  • Zhao, Z., et al., 2020. Factors affecting the rutting resistance of asphalt pavement based on the field cores using multi-sequenced repeated loading test. Construction and Building Materials, 253, 0950–0618. DOI: 10.1016/j.conbuildmat.2020.118902.
  • Zhou, F., et al., 2019. Optimization of lateral wandering of automated vehicles to reduce hydroplaning potential and to improve pavement life. Transportation Research Record, 2673, 81–89. DOI: 10.1177/0361198119853560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.