289
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A review of advanced pavement distress evaluation techniques using unmanned aerial vehicles

& ORCID Icon
Article: 2268796 | Received 28 Jul 2023, Accepted 04 Oct 2023, Published online: 07 Nov 2023

References

  • Agnisarman, S., et al., 2019. A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection. Automation in Construction, 97, 52–76. doi:10.1016/j.autcon.2018.10.019.
  • Ahmed, T., et al., 2021. Postmortem evaluation of accelerated rate of raveling of in-service asphalt pavements in arid climatic conditions-case of Kuwait. Case Studies in Construction Materials, 14. doi:10.1016/j.cscm.2021.e00533.
  • Aleshin, M., Gavrilova, L., and Melnikov, A., 2019. Use of unmanned aerial vehicles on example of phantom 4 (standard) for creating digital terrain models. Eng. Rural Development, 18, 1686–1692. doi:10.22616/ERDev2019.18.N488.
  • Anurogo, W., et al., 2017. A simple aerial photogrammetric mapping system overview and image acquisition using unmanned aerial vehicles (UAVs). Journal of Applied Geospatial Information, 1, 11–18. doi:10.30871/jagi.v1i01.360.
  • Atencio, E., et al., 2022. Calibration of UAV flight parameters for pavement pothole detection using orthogonal arrays. Automation in Construction, 143. doi:10.1016/j.autcon.2022.104545.
  • Banerjee, S., et al., 2020. Melanoma diagnosis using deep learning and fuzzy logic. Diagnostics, 10, 577. doi:10.3390/diagnostics10080577
  • Bochkovskiy, A., Wang, C.Y., and Liao, H., 2020. YOLOv4: optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934, https://arxiv.org/abs/2004.10934.
  • Cao, C., et al., 2020. Research on airplane and ship detection of aerial remote sensing images based on convolutional neural network. Sensors, 20, 4696. doi:10.3390/s20174696
  • Cha, Y.J., Choi, W., and Büyük¨oztürk, O., 2017. Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32 (5), 361–378. doi:10.1111/mice.12263.
  • Chambon, S., and Moliard, J.-M., 2011. Automatic road pavement assessment with image processing: review and comparison. International Journal of Geophysics, 2011, 1–20. doi:10.1155/2011/989354
  • Choi, J., Zhu, L., and Kurosu, H., 2016. Detection of cracks in paved road surface using laser scan image data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1, 559–562. doi:10.5194/isprs-archives-XLI-B1-559-2016
  • Cline, G. D., Shahin, M. Y., and Burkhalter, J. A., 2003. Automated data collection for pavement condition index survey,” in Proc. Annu. Meeting Transp. Res. Board, Washington, DC, USA, pp. 1–16.
  • Coenen, T.B.J., and Golroo, A, 2017. A review on automated pavement distress detection methods. https://doi.org/10.1080/23311916.2017.1374822
  • Congedo, L., 2020. Semi-automatic classification plugin documentation. https://semiautomaticclassificationmanualv5.readthedocs.io/it/latest/, July 29.
  • Corazza, M.V., Di Mascio, P., and Moretti, L., 2016. Managing sidewalk pavement maintenance: a case study to increase pedestrian safety. Journal of Traffic and Transportation Engineering (English Edition), 3, 203–214. doi:10.1016/j.jtte.2016.04.001.
  • Cottrell, W.D., et al., 2009. Transportation infrastructure maintenance management: case study of a small urban city. Journal of Infrastructure Systems, 15, 120–132. doi:10.1061/(ASCE)1076-0342(2009)15:2(120).
  • Cruz Toribio, J.O., and Gutierrez Lazares, J.W., 2019. Evaluaci´on superficial de vías urbanas empleando vehículo a´ereo no tripulado (VANT). M´etodos y Materiales, 8, 23–32. doi:10.15517/mym.v8i1.34113.
  • Cubero-Fernandez, A., et al., 2017. Efficient pavement crack detection and classification. EURASIP Journal on Image and Video Processing, 1. doi:10.1186/s13640-017-0187-0.
  • de Luis-Ruiz, J.M., et al., 2021. Optimization of photogrammetric flights with UAVs for the metric virtualization of archaeological sites. application to Juliobriga (Cantabria, Spain). Applied Sciences, 11. doi:10.3390/app11031204.
  • Du, Y., et al., 2020. Pavement distress detection and classification based on YOLO network. International Journal of Pavement Engineering, 1–14. doi:10.1080/10298436.2020.1714047.
  • Duque, L., Seo, J., and Wacker, J., 2018. Synthesis of unmanned aerial vehicle applications for infrastructures. Journal of Performance of Constructed Facilities, 32 (4), doi:10.1061/(ASCE)CF.1943-5509.0001185.
  • Emery, W., and Singh, M. C., 2013. Large-area road-surface quality and landcover classification using very-high spatial resolution aerial and satellite data. Technical Report, 13–28.
  • Ersoz, A.B., Pekcan, O., and Teke, T., 2017. Crack identification for rigid pavements using unmanned aerial vehicles, IOP Conf. Ser. Mater. Sci. Eng, IOP Science, Prague, Czech Republic. doi:10.1088/1757-899X/236/1/012101.
  • Ge, Z., et al., 2021. Yolox: exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
  • George, K.P., Rajagopal, A.S., and Lim, L.K, 1989. Models for predicting pavement deterioration. Transp. Res. Rec, 1215, 1–7.
  • Georgopoulos, A., Loizos, A., and Flouda, A., 1995. Digital image processing as a tool for pavement distress evaluation. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 50 (no. 1), 23–33. doi:10.1016/0924-2716(95)91844-A
  • Ghosh Mondal, T., et al., 2020. Deep learning-based multi-class damage detection for autonomous post-disaster reconnaissance. Structural Control and Health Monitoring, 27, 1–7. doi:10.1002/stc.2507.
  • Harwin, S., and Lucieer, A., 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4, 1573–1599. doi:10.3390/rs4061573.
  • Hawkins, S, 2016. Using a drone and photogrammetry software to create orthomosaic images and 3D model of aircraft accident sites. In Proceedings of the ISASI Seminar. Air Accidents (Engineering) at the UK AAIB. Iceland. Tanpa Awak di Sungai Kembung, Pulau Bengkalis, Indonesia, Didalam Prosiding Seminar Nasional Perikanan dan Kelautan Universitas Riau Ke, Reykjavik, Iceland, 17–20 October 2016.
  • He, K., et al., 2016. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 770–778. doi:10.1109/CVPR.2016.90.
  • Herold, M., and Roberts, D., 2005. Spectral characteristics of asphalt road aging and deterioration: implications for remote-sensing applications. Applied Optics, 44 (no. 20), 4327–4334. doi:10.1364/AO.44.004327
  • Hou, Y., et al., 2020 June. The state-of-the-Art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis. Engineering Journal, 7 (6), 845–856.
  • Huidrom, L., Das, L.K., and Sud, S.K., 2013. Method for automated assessment of potholes, cracks and patches from road surface video clips. Procedia – Social and Behavioral Sciences, 104, 312–321. doi:10.1016/j.sbspro.2013.11.124.
  • Huyan, J., et al., 2020. CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection. Structural Control and Health Monitoring, 27 (8), doi:10.1002/stc.2551.
  • Inzerillo, L., Di Mino, G., and Roberts, R., 2018. Image-based 3D reconstruction using traditional and UAV datasets for analysis of road pavement distress. Automation in Construction, 96, 457–469. doi:10.1016/j.autcon.2018.10.010.
  • Jiang, S., and Zhang, J., 2020. Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system. Computer-Aided Civil and Infrastructure Engineering, 35, 549–564. doi:10.1111/mice.12519.
  • Jofre, C., et al., 2021. Implementation of facility management for port infrastructure through the use of UAVs, photogrammetry and BIM. Sensors, 21, 6686. doi:10.1080/23311916.2017.1374822.
  • Jog, G.M., et al., 2012. Pothole properties measurement through visual 2D recognition and 3D reconstruction. Comput. Civ. Eng, 553–560. doi:10.1061/9780784412343.0070
  • Jol, H. M., 2008. Ground penetrating radar theory and applications. Edinburgh, UK: Elsevier.
  • Julge, K., Ellmann, A., and K¨o¨ok, R., 2019. Unmanned aerial vehicle surveying for monitoring road. The Baltic Journal of Road and Bridge Engineering, 14, 1–17. doi:10.7250/bjrbe.2019-14.430
  • Kim, I.H., et al., 2018. Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle. Sensors, 18 (6), doi:10.3390/s18061881.
  • Kim, H., Sim, S., and Cho, S., 2015. Unmanned aerial vehicle (UAV)-powered concrete crack detection based on digital image processing. Proc. International Conference on Advances in Experimental Structural Engineering, 105–123.
  • Knyaz, V.A., and Chibunichev, A.G., 2016. Photogrammetric techniques for road surface analysis, in: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch, Copernicus publications, Prague, Czech Republic, pp. 515–520. doi:10.5194/isprsarchives-XLI-B5-515-2016.
  • Koch, C., et al., 2015. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Advanced Engineering Informatics, 29 (no. 2), 196–210. doi:10.1016/j.aei.2015.01.008
  • Krizhevsky, A., Sutskever, I., and Hinton, G.E., 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60 (6), 84–90. doi:10.1145/3065386.
  • Landa, J., and Prochazka, D., 2014. Automatic road inventory using LiDAR. Procedia Economics and Finance, 12, 363–370. doi:10.1016/s2212-5671(14)00356-6.
  • Law, H., and Deng, J., 2020. Cornernet: detecting objects as paired keypoints. International Journal of Computer Vision, 128 (3), 642–656. doi:10.1007/s11263-019-01204-1.
  • Lecun, Y., et al., 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86 (11), 2278–2324. doi:10.1109/5.726791.
  • Leonardi, G., et al., 2019. 3D mapping of pavement distresses using an unmanned aerial vehicle (UAV) system. In: F. Calabr`o, L. Della Spina and C. Bevilacqua, Eds. Int. Symp. New Metrop. Perspect, Springer, Reggio Calabria, Italy. 164–171.
  • Li, B.X., et al., 2019. Automatic classification of pavement crack using deep convolutional neural network. International Journal of Pavement Engineering, 29 (4), 930–940. doi:10.1080/10298436.2018.1485917.
  • Li, W., Shen, Z., and Li, P., 2019. Crack detection of track plate based on YOLO. In Proceedings of the 2019 12th International Symposium on Computational Intelligence and Design, ISCID 2019, Hangzhou, China, 14–15 December 2019, 15–18.
  • Liu, Z., et al., 2021. Application of combining YOLO models and 3D GPR images in road detection and maintenance. Remote Sensing, 13 (6), 1081. doi:10.3390/rs13061081.
  • Liu, P., Chen, X., and Yang, L., 2011. An approach of system calibration for UAV photogrammetry, in: 2011 International Conference on Optical Instruments and Technology: optoelectronic Imaging and Processing Technology 8200, 2011, p. 82000M. doi:10.1117/12.906667.
  • Loprencipe, G., Pantuso, A., and Di Mascio, P., 2017. Sustainable pavement management system in urban areas considering the vehicle operating costs. Sustainability (Switzerland), doi:10.3390/su9030453.
  • Luo, Z., Yu, H., and Zhang, Y, 2020. Pine cone detection using boundary equilibrium generative adversarial networks and improved YOLOv3 model. Sensors, 20, 4430. doi:10.3390/s20164430
  • Maeda, H., et al., 2018. Road damage detection and classification using deep neural networks with smartphone images. Computer-Aided Civil and Infrastructure Engineering, 33, 1127–1141. doi:10.1111/mice.12387.
  • Majidifard, H., Adu-Gyamfi, Y., and Buttlar, W.G., 2020. Deep machine learning approach to develop a new asphalt pavement condition index. Construction and Building Materials, 247, 118513. doi:10.1016/j.conbuildmat.2020.118513.
  • Mancini, A., et al., 2013. Road pavement crack automatic detection by MMS images. 2013 21st Mediterranean Conference on Control and Automation, MED – Conference Proceedings, 2013, 1589–1596. doi:10.1109/MED.2013.6608934.
  • Mandal, V., Mussah, A.R., and Adu-Gyamfi, Y., 2020. Deep learning frameworks for pavement distress classification: a comparative analysis. Proceedings of the IEEE International Conference on Big Data, IEEE, 5577–5583. doi:10.1109/BigData50022.2020.9378047.
  • Mandal, V., Uong, L., and Adu-Gyamfi, Y, 2018. Automated road crack detection using deep convolutional neural networks. IEEE International Conference on Big Data, Big Data 2018, Seattle, WA, USA, 10–13 December 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. 5212–5215.
  • Mansour, M.F., Morgenstern, N.R., and Martin, C.D, 2011. Expected damage from displacement of slow-moving slides. Landslides, 8 (1), 117–131. doi:10.1007/s10346-010-0227-7.
  • Mathavan, S., et al., 2014. Pavement raveling detection and measurement from synchronized intensity and range images. Transportation Research Record, doi:10.3141/2457-01.
  • Mathavan, S., Kamal, K., and Rahman, M, 2015a. A review of three-dimensional imaging technologies for pavement distress detection and measurements. IEEE Transactions on Intelligent Transportation Systems, 16, 2353–2362. doi:10.1109/TITS.2015.2428655.
  • Mathavan, S., Rahman, M., and Kamal, K., 2015b. Use of a self-organizing map for crack detection in highly textured pavement images. Journal of Infrastructure Systems, 21. doi:10.1061/(ASCE)IS.1943-555X.0000237.
  • Mavrouli, O., et al., 2019. Integrated risk assessment due to slope instabilities in the roadway network of Gipuzkoa, Basque Country. Natural Hazards and Earth System Sciences, 19 (2), 399–419. doi:10.5194/nhess-19-399-2019.
  • Mei, A., et al., 2014. Integration of field and laboratory spectral data with multi-resolution remote sensed imagery for asphalt surface differentiation. Remote Sensing, 6 (no. 4), 2765–2781. doi:10.3390/rs6042765
  • Mei, Q., and Gu, M., 2020. Multi-level feature fusion in densely connected deep-learning architecture and depth-first search for crack segmentation on images collected with smartphones. Sage Journals, vol. 19 (no 6), 1726–1744. November 2020
  • Mei, Q.P., and Gul, M., 2020. A cost effective solution for pavement crack inspection using cameras and deep neural networks. Construction and Building Materials, 256, 119397. doi:10.1016/j.conbuildmat.2020.119397.
  • Mettas, C., et al., 2015. Monitoring asphalt pavement damages using remote sensing techniques. Proc. SPIE, 9535, Art. no. 95350S.
  • Mitishita, E.A., and Santos de Salles, G., 2018. The influence of redundant images in UAV photogrammetry application. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Valencia, Spain, 7898–7901. doi:10.1109/IGARSS.2018.8517423.
  • Mokhtaria, S., Wub, L., and Yunc, H.-B., 2016. Comparison of supervised classification techniques for vision-based pavement crack detection,” in Proc. 95th Annu. Meeting, Transp. Res. Board, Washington, DC, USA. 1–17.
  • Moon, D., et al., 2019. Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning. Automation in Construction, 98, 322–331. doi:10.1016/j.autcon.2018.07.020.
  • Morera, Á., et al., 2020. Ssd vs. yolo for detection of outdoor urban advertising panels under multiple variabilities. Sensors, 20, 4587. doi:10.3390/s20164587
  • Naddaf-Sh, M.-M., et al., 2019. Real-time road crack mapping using an optimized convolutional neural network. doi:10.1155/2019/2470735.
  • Nappo, N., et al., 2019. Slow-moving landslides interacting with the road network: analysis of damage using ancillary data, in situ surveys and multi-source monitoring data. Engineering Geology, 260, 105244. doi:10.1016/j.enggeo.2019.105244.
  • Nappo, N., et al., 2021. Use of UAV-based photogrammetry products for semi-automatic detection and classification of asphalt road damage in landslide-affected areas. Engineering Geology, 294. doi:10.1016/j.enggeo.2021.106363.
  • Nhat-Duc, H., Nguyen, Q.L., and Tran, V.D, 2018. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Automation in Construction, 94 (January), 203–213. doi:10.1016/j.autcon.2018.07.008.
  • Nie, M., and Wang, C, 2019. Pavement crack detection based on yolo v3. 2nd International Conference on Safety Produce Informatization (IICSPI 2019), Chongqing, China. 28–30 November 2019. 327–330.
  • Oliveira, H., 2013. Crack detection and characterization in flexible road pavements using digital image processing. Ph.D. dissertation. Universidade T´ecnica de Lisboa, Lisboa, Portugal.
  • Oliveira, H., and Correia, P.L, 2013. Automatic road crack detection and characterization. IEEE Transactions on Intelligent Transportation Systems, 14 (1), 155–168. doi:10.1109/TITS.2012.2208630.
  • Osorio, A., et al., 2014. Calibration and validation of condition indicator for managing urban pavement networks. Transportation Research Record: Journal of the Transportation Research Board, 2455, 28–36. doi:10.3141/2455-04.
  • Pan, Y., et al., 2017. Object-based and supervised detection of potholes and cracks from the pavement images acquired by UAV. Presented at the Tehran’s Joint ISPRS Conf. GI Res., SMPR and EOEC 2017.
  • Pan, Y.F., et al., 2018. Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (10), 3701–3712. doi:10.1109/JSTARS.2018.2865528.
  • Park, S.E., Eem, S.H., and Jeon, H, 2020. Concrete crack detection and quantification using deep learning and structured light. Construction and Building Materials, 252, 119096. doi:10.1016/j.conbuildmat.2020.119096
  • Peng, X., et al., 2020. The feasibility assessment study of bridge crack width recognition in images based on special inspection UAV. Advances in Civil Engineering, doi:10.1155/2020/8811649.
  • Powell, L., and Satheeshkumar, K.G, 2017. Automated road distress detection. In: Proceedings of IEEE International Conference on Emerging Technological Trends in Computing, Communications and Electrical Engineering, 2016. ICETT. doi:10.1109/ICETT.2016.7873662. March 7.
  • Prosser-Contreras, M., et al., 2020. Use of unmanned aerial vehicles (UAVs) and photogrammetry to obtain the international roughness index (IRI) on roads. Applied Sciences, 10, 8788. doi:10.3390/app10248788.
  • Puan, O.C., Mustaffar, M., and Ling, T.-C, 2007. Automated pavement imaging program (APIP) for pavement cracks classification and quantification. Malaysian Journal of Civil Engineering, Vol. 19 (Issue 1.
  • Qgis.org, 2020. Welcome to the QGIS project (n.d. Accessed 29 July 2020).
  • Qiu, Z., et al., 2019. Automatic visual defects inspection of wind turbine blades via YOLO-based small object detection approach. Journal of Electronic Imaging, 2019 (28), 1. doi:10.1117/1.JEI.28.4.043023
  • Ragnoli, A., De Blasiis, M., and Di Benedetto, A., 2018. Pavement distress detection methods: a review. Infrastructures, 3 (4), 58. doi:10.3390/infrastructures3040058.
  • Redmon, J., and Farhadi, A, 2017. YOLO9000: better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017.
  • Redmon, J., and Farhadi, A, 2018. YOLOv3: an incremental improvement. arXiv, arXiv:1804.02767.
  • Redmon, J., and Farhadi, A., 2018. YOLOv3: an incremental improvement, arXiv preprint arXiv:1804.02767, https://arxiv.org/abs/1804.02767.
  • Ren, S.Q., et al., 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (6), 1137–1149. doi:10.1109/TPAMI.2016.2577031.
  • Resende, M. R., Bernucci, L. L. B., and Quintanilha, J. A., 2014. Monitoring the condition of roads pavement surfaces: proposal of methodology using hyperspectral images. Journal of Transport Literature, 8 (2), 201–220. doi:10.1590/S2238-10312014000200009
  • Roberts, R., Inzerillo, L., and di Mino, G., 2020. Using uav based 3d modelling to provide smart monitoring of road pavement conditions. Information (Switzerland), 11 (12), 1–24. doi:10.3390/info11120568.
  • Romero-Chambi, E., et al., 2020. Analysis of optimal flight parameters of unmanned aerial vehicles (UAVs) for detecting potholes in pavements. Applied Sciences, 10 (12), doi:10.3390/app10124157.
  • Ruzgien˙ e, B., et al., 2015. UAV photogrammetry for road surface modelling. The Baltic Journal of Road and Bridge Engineering, 10, 151–158. doi:10.3846/bjrbe.2015.19.
  • Saad, A.M., and Tahar, K.N, 2019. Identification of rut and pothole by using multirotor unmanned aerial vehicle (UAV). Measurement, 137, 647–654. doi:10.1016/j.measurement.2019.01.093
  • Saar, T., and Talvik, O., 2010. Automatic asphalt pavement crack detection and classification using neural networks. Proc. IEEE 12th Biennial Baltic Electron. Conf, 345–348.
  • Salari, E., and Bao, G, 2011. Automated pavement distress inspection based on 2D and 3D information. In Proceedings of the 2011 IEEE International Conference on Electro/Information Technology, Mankato, MN, USA, 15–17 May 2011. pp. 1–4.
  • Schlotjes, M. R., et al., 2015. Using support vector machines to predict the probability of pavement failure. Proceedings of the Institution of Civil Engineers: Transport, 168 (3), 212–222.
  • Schnebele, E., et al., 2015. Review of remote sensing methodologies for pavement management and assessment. European Transport Research Review, 7 (no. 2), 1–19. doi:10.1007/s12544-015-0156-6
  • Shah, Y.U., Jain, S.S., and Parida, M., 2014. Evaluation of prioritization methods for effective pavement maintenance of urban roads. International Journal of Pavement Engineering, 15, 238–250. doi:10.1080/10298436.2012.657798.
  • Shi, Y., et al., 2016. Automatic road crack detection using random structured forests. IEEE Transactions on Intelligent Transportation Systems, 17 (2), 3434–3445. doi:10.1109/TITS.2016.2552248.
  • Siddharth, S., et al., 2012. Pavement crack classifiers: a comparative study. Res. J. Appl. Sci. Eng. Technol, vol. 4 (no. 24), 5434–5437.
  • Silva, L.A., et al., 2020. An architectural multi-agent system for a pavement monitoring system with pothole recognition in uav images. Sensors, 20 (21), doi:10.3390/s20216205.
  • Simonyan, K., and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition, arXiv preprint. arXiv:1409.1556, https://arxiv.org/abs/1409.1556.
  • Singh, P. P., and Garg, R., 2013. Study of spectral reflectance characteristics of asphalt road surface using geomatics techniques. Proc. IEEE Int. Conf. Adv. Comput. Commun. Inform., 516–520.
  • Singh, P. P., and Garg, R., 2014. Road detection from remote sensing images using impervious surface characteristics: review and implication. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-8 (no. 8), 955–959. doi:10.5194/isprsarchives-XL-8-955-2014
  • Spencer, B.F., Hoskere, V., and Narazaki, Y., 2019. Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering, 5 (2), 199–222. doi:10.1016/j.eng.2018.11.030.
  • Szegedy, C., et al., 2015. Going deeper with convolutions. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 1–9. doi:10.1109/CVPR.2015.7298594.
  • Tan, Y., and Li, Y, 2019. UAV photogrammetry-based 3D road distress detection. ISPRS International Journal of Geo-Information, 8 (9), doi:10.3390/ijgi8090409.
  • Uddin, W., and Al-Turk, E., 2001. “Airborne LiDAR digital terrain mapping for transportation infrastructure asset management,” in Proc. 5th Int. Conf. Manag. Pavements, Seattle, WA, USA. 11–14.
  • Urban, R., Štroner, M., and Línková, L, 2021. A new method for uav lidar precision testing used for the evaluation of an affordable dji zenmuse l1 scanner. Remote Sensing, 13 (23), doi:10.3390/rs13234811.
  • Vazquez-Nicolas, J.M., et al., 2020. PD+ SMC quadrotor control for altitude and crack recognition using deep learning. International Journal of Control, Automation and Systems, 18, 834–844. doi:10.1007/s12555-018-0852-9.
  • Wang, K. C., et al., 2007. Automated imaging technique for runway condition survey. Proc. FAA Worldwide Airport Technol. Transfer Conf. Expo.
  • Wang, W., et al., 2019. Pavement crack image acquisition methods and crack extraction algorithms: a review. Journal of Traffic and Transportation Engineering (English Edition), 6 (Issue 6), 535–556. Periodical Offices of Chang- an University. doi:10.1016/j.jtte.2019.10.001.
  • Wang, J., Ma, S., and Jiang, L. ICCTP, 2009. Critical issues in transportation systems planning, development, and management. Research on Automatic Identification Method of Pavement Sag Deformation, 6, 1–6.
  • Wu, W., et al., 2019. Coupling deep learning and UAV for infrastructure condition assessment automation, in: 2018 IEEE International Smart Cities Conference, ISC2 2018. doi:10.1109/ISC2.2018.8656971.
  • Xu, G., et al., 2008. Automatic recognition of pavement surface crack based on BP neural network. Proc. IEEE Int. Conf. Comput. Elect. Eng., 32, 19–22.
  • Yang, F., et al., 2020. Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Transactions on Intelligent Transportation Systems, 21 (4), 1525–1535. doi:10.1109/TITS.2019.2910595.
  • Yu, Y., et al., 2014. 3D crack skeleton extraction from mobile LiDAR point clouds. In International Geoscience and Remote Sensing Symposium (IGARSS), July 13–18 (pp. 914–917). Quebec City, QC: IEEE. doi:10.1109/IGARSS.2014.6946574.
  • Zakeri, H., Nejad, F. M., and Fahimifar, A., 2017. Image based techniques for crack detection, classification and quantification in asphalt pavement: a review. Archives of Computational Methods in Engineering, 24 (no. 4), 935–977. doi:10.1007/s11831-016-9194-z
  • Zhang, Z., et al., 2014. An efficient algorithm for pothole detection using stereo vision. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May. 564–568.
  • Zhang, J., et al., 2020. Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method. Automation in Construction, 113, 103119. doi:10.1016/j.autcon.2020.103119
  • Zhang, S., and Bogus, S. M., 2014. Use of low-cost remote sensing for infrastructure management, In Construction Research Congress 2014, Atlanta, GE, USA: ASCE, 2014. 1299–1308.
  • Zhang, C., and Elaksher, A, 2012. An unmanned aerial vehicle-based imaging system for 3D measurement of unpaved road surface distress. Computer-Aided Civil and Infrastructure Engineering, 27, 118–129. doi:10.1111/j.1467-8667.2011.00727.x
  • Zhou, K., et al., 2023. Unmanned aerial vehicle-based computer vision for structural vibration measurement and condition assessment: a concise survey. Journal of Infrastructure Intelligence and Resilience, 2 (2), 100031. doi:10.1016/j.iintel.2023.100031.
  • Zhou, X., Wang, D., and Krhenbühl, P., 2019. Objects as points, arXiv preprint. arXiv: 1904.07850, https://arxiv.org/abs/1904.07850.
  • Zhu, J., et al., 2022. Pavement distress detection using convolutional neural networks with images captured via UAV. Automation in Construction, 133. doi:10.1016/j.autcon.2021.103991.
  • Zhuang, Y., Ke, R., and Wang, Y, 2020. Edge-Based traffic flow data collection method using onboard monocular camera. Journal of Transportation Engineering, Part A: Systems, 146, 04020096. doi:10.1061/JTEPBS.0000416

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.