56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Aging effect of damp-heat and saline-alkali environment on fatigue performance and chemical evolution of asphalt

, , , , , & show all
Article: 2270556 | Received 17 Mar 2023, Accepted 09 Oct 2023, Published online: 27 Nov 2023

References

  • Alhamali, D.I., et al., 2016. Physical and rheological characteristics of polymer modified bitumen with nanosilica particles. Arabian Journal for Science and Engineering, 41 (4), 1521–1530. doi:10.1007/s13369-015-1964-7.
  • Babadopulos, L.F.D.F., et al., 2018. Fatigue cracking simulation of aged asphalt pavements using a viscoelastic continuum damage model. Road Materials and Pavement Design, 19 (3), 546–560. doi:10.1080/14680629.2018.1418715.
  • Barghabany, P., et al., 2022. Chemical and rheological characterization of asphalt binders: a comparison of asphalt binder aging and asphalt mixture aging. Transportation Research Record: Journal of the Transportation Research Board, 2676 (5), 147–157. doi:10.1177/03611981211067977.
  • Cavalli, M.C., et al., 2018. Aging effect on rheology and cracking behaviour of reclaimed binder with bio-based rejuvenators. Journal of Cleaner Production, 189, 88–97. doi:10.1016/j.jclepro.2018.03.305.
  • Chen, M.Y., et al., 2021a. Effect of water aging on the fatigue performance of asphalt binders using the linear amplitude sweep. Construction and Building Materials, 304, 124679. doi:10.1016/j.conbuildmat.2021.124679.
  • Chen, H.X., et al., 2021b. Effect of multiple freeze-thaw on rheological properties and chemical composition of asphalt binders. Construction and Building Materials, 308, 125086. doi:10.1016/j.conbuildmat.2021.125086.
  • Chen, H., et al., 2021c. Modelling effects of aging on asphalt binder fatigue using complex modulus and the LAS test. International Journal of Fatigue, 146, 106150. doi:10.1016/j.ijfatigue.2021.106150.
  • Chen, M.Y., et al., 2022. Micro-characterization of bitumens under the coupling action of moisture and oxygen. Journal of Building Engineering, 53, 104589. doi:10.1016/j.jobe.2022.104589.
  • Cortizo, M.S., et al., 2004. Effect of the thermal degradation of SBS copolymers during the ageing of modified asphalts. Polymer Degradation and Stability, 86 (2), 275–282. doi:10.1016/j.polymdegradstab.2004.
  • Dai, J.H., et al., 2011. Leaching potential of salt water in coastal saline soils. Journal of Soil and Water Conservation, 25 (03), 250–253. (in Chinese).
  • Ding, J.T., et al., 2023. Statistical analysis of long-term aging parameters of laboratory- and field-aged asphalt binders considering rheological and chemical properties. Transportation Research Record: Journal of the Transportation Research Board, 2677, 606–618. doi:10.1177/03611981231159896.
  • Gao, J.F., et al., 2018. Research on properties of bio-asphalt binders based on time and frequency sweep test. Construction and Building Materials, 160, 786–793. doi:10.1016/j.conbuildmat.2018.01.048.
  • Glover, C.J., et al., 2014. Evaluation of binder aging and its influence in aging of hot mix asphalt concrete: technical report. Transportation Research Record. https://trid.trb.org/view/1300233.
  • Gong, Y., et al., 2021. Effect of water diffusion and thermal coupling condition on SBS modified asphalts’ surface micro properties. Construction and Building Materials, 273, 121758. doi:10.1016/j.conbuildmat.2020.121758.
  • Hasan, M.A., et al., 2019. Utilizing simplified viscoelastic continuum damage model to characterize the fatigue behavior of styrene-butadiene-styrene (SBS) modified binders. Construction and Building Materials, 200, 159–169. doi:10.1016/j.conbuildmat.2018.12.048.
  • Hassanpour-Kasanagh, S., et al., 2020. Rheological properties of asphalt binders modified with recycled materials: A comparison with styrene-butadiene-styrene (SBS). Construction and Building Materials, 230, 117047. doi:10.1016/j.conbuildmat.2019.117047.
  • Keshavarzi, B. and Kim, Y.R., 2020. A dissipated pseudo strain energy-based failure criterion for thermal cracking and its verification using thermal stress restrained specimen tests. Construction and Building Materials, 233, 117199. doi:10.1016/j.conbuildmat.2019.117199.
  • Li, Y.M., et al., 2020. Investigation on thermal aging stability of crosslinked styrene butadiene rubber modified asphalt binder. Road Materials and Pavement Design, 21 (7), 1902–1917. doi:10.1080/14680629.2019.1574234.
  • Liu, H.T., et al., 2012. Response of water and salt movement to subsurface pipe drainage system in saline-alkali coastal areas of Hebei province. Chinese Journal of Eco-Agriculture, 20 (12), 1693–1699. (in Chinese).
  • Ma, X.Y., et al., 2019a. Assessment of existing micro-mechanical models for asphalt mastic considering inter-particle and physico-chemical interaction. Construction and Building Materials, 225, 649–660. doi:10.1016/j.conbuildmat.2019.07.227.
  • Ma, X.Y., et al., 2019b. Influence of the properties of an asphalt binder on the rheological performance of mastic. Construction and Building Materials, 227, 116659. doi:10.1016/j.conbuildmat.2019.08.040.
  • Ma, X.Y., et al., 2019c. Fatigue life prediction of asphalt mastics based on simplified viscoelastic continuum damage model. Journal of Chang'an University (Natural Science Edition), 39 (4), 35–43. doi:10.19721/j.cnki.1671-8879.2019.04.005.
  • Menapace, I., et al., 2019. Effects of environmental factors on the chemical composition of asphalt binders. Energy & Fuels, 33 (4), 2614–2624. doi:10.1021/acs.energyfuels.8b03273.
  • Meng, Y.Y., et al., 2022. Investigation on the erosion mechanism of simulated salt conditions on bitumen. Construction and Building Materials, 334, 127267. doi:10.1016/j.conbuildmat.2022.127267.
  • Nie, S., 2019. Investigation on the coupled aging behaviors of ultraviolet light with a range of solutions on asphalt. Wuhan University of Technology.
  • Oldham, D., et al., 2021. Transesterification of waste cooking oil to produce a sustainable rejuvenator for aged asphalt. Resources, Conservation and Recycling, 168, 105297. doi:10.1016/j.resconrec.2020.105297.
  • Perez-Jimenez, F., et al., 2017. Complexity of the behaviour of asphalt materials in cyclic testing. International Journal of Fatigue, 98, 111–120. doi:10.1016/j.ijfatigue.2017.01.026.
  • Petersen, J.C., et al., 2011. Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited. Road Materials and Pavement Design, 12 (4), 795–819. doi:10.3166/RMPD.12.795-819.
  • Ren, S.R., et al., 2020. Evaluation of rheological behaviors and anti-aging properties of recycled asphalts using low-viscosity asphalt and polymers. Journal of Cleaner Production, 253, 120048. doi:10.1016/j.jclepro.2020.120048.
  • Safaei, F. and Castorena, C., 2017. Material nonlinearity in asphalt binder fatigue testing and analysis. Materials and Design, 133, 376–389. doi:10.1016/j.matdes.2017.08.010.
  • Safaei, F., Castorena, C. and Kim, Y.R., 2016. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling. Mechanics of Time-Dependent Materials, 20 (3), 299–323. doi:10.1007/s11043-016-9304-1.
  • Schapery, R.A., 1987. Deformation and fracture characterization of inelastic composite materials using potentials. Polymer Engineering and Science, 27 (1), 63–76. doi:10.1002/pen.760270110.
  • Selbes, M., et al., 2015. Leaching of DOC, DN, and inorganic constituents from scrap tires. Chemosphere, 139, 617–623. doi:10.1016/j.chemosphere.2015.01.042.
  • Shafabakhsh, G., Rajabi, M. and Sahaf, Ali, 2019. The fatigue behavior of SBS/nanosilica composite modified asphalt binder and mixture. Construction and Building Materials, 229, 116796. doi:10.1016/j.conbuildmat.2019.116796.
  • Shu, B.N., et al., 2020. Self-healing capability of asphalt mixture containing polymeric composite fibers under acid and saline-alkali water solutions. Journal of Cleaner Production, 268, 122387. doi:10.1016/j.jclepro.2020.122387.
  • Singh, D., Girimath, S. and Ashish, P.K., 2018. Performance evaluation of polymer-modified binder containing reclaimed asphalt pavement using multiple stress creep recovery and linear amplitude sweep tests. Journal of Materials in Civil Engineering, 30 (3), 04018004. doi:10.1061/(ASCE)MT.1943-5533.0002176.
  • Tang, N.P., et al., 2019. Chemical and rheological evaluation of aging characteristics of terminal blend rubberized asphalt binder. Construction and Building Materials, 205, 87–96. doi:10.1016/j.conbuildmat.2019.02.008.
  • Underwood, B.S., Baek, C. and Kim, Y.R., 2012. Simplified viscoelastic continuum damage model as platform for asphalt concrete fatigue analysis. Transportation Research Record: Journal of the Transportation Research Board, 2296 (1), 36–45. doi:10.3141/2296-04.
  • Wang, C., et al., 2017. Experimental study on rheological characteristics and performance of high modulus asphalt binder with different modifiers. Construction and Building Materials, 155, 26–36. doi:10.1016/j.conbuildmat.2017.08.058.
  • Wang, J.Y., et al., 2018. Chemical, thermal and rheological characteristics of composite polymerized asphalts. Fuel, 227, 289–299. doi:10.1016/j.fuel.2018.04.100.
  • Wang, F., et al., 2020. Correlation of asphalt performance indicators and aging degrees: A review. Construction and Building Materials, 250, 118824. doi:10.1016/j.conbuildmat.2020.118824.
  • Wang, H.P., et al., 2020. Fatigue performance of long-term aged crumb rubber modified bitumen containing warm-mix additives. Construction and Building Materials, 239, 117824. doi:10.1016/j.conbuildmat.2019.117824.
  • Wang, G.X., et al., 2021. Characteristics of temporal and spatial distribution of salinity in saline soil and its main influencing factors in Xuwei New District of Lianyungang. Safety and Environmental Engineering, 28 (03), 16–24. (in Chinese).
  • Wei, C.W., et al., 2019. Influence of SBS modifier on aging behaviors of SBS modified asphalt. Journal of Materials in Civil Engineering, 31 (9), 04019184. doi:10.1061/(ASCE)MT.1943-5533.0002832.
  • Wen, Y.K., et al., 2021. Assessment of various fatigue life indicators and fatigue properties of rock asphalt composite. Construction and Building Materials, 289, 123147. doi:10.1016/j.conbuildmat.2021.123147.
  • Xie, W., et al., 2017. A framework to characterize the healing potential of asphalt binder using the linear amplitude sweep test. Construction and Building Materials, 154, 771–779. doi:10.1016/j.conbuildmat.2017.08.021.
  • Xiong, R., et al., 2019. Performance damage characteristics of asphalt binder suffered from the action of sulfate. Advances in Materials Science and Engineering, 2019, 1–8. doi:10.1155/2019/5465687.
  • Xue, Y.J., et al., 2019. Evaluation of dissolved organic carbon released from aged asphalt binder in aqueous solution. Construction and Building Materials, 218, 465–476. doi:10.1016/j.conbuildmat.2019.05.060.
  • Yan, C.Q., et al., 2022. Characterizing the fatigue resistance of multiple modified asphalts using time sweep test, LAS test and elastic recovery test. Construction and Building Materials, 322, 125806. doi:10.1016/j.conbuildmat.2021.125806.
  • Yang, H., et al., 2020. The effect of water solution erosion on rheological, cohesion and adhesion properties of asphalt. Construction and Building Materials, 246, 118465. doi:10.1016/j.conbuildmat.2020.118465.
  • Yu, H.N., et al., 2019. Impact of ultraviolet radiation on the aging properties of SBS-modified asphalt binders. Polymers, 11 (7), 1111. doi:10.3390/polym11071111.
  • Zhang, X.R., et al., 2021a. Evaluating the rheological properties of high-modulus asphalt binders modified with rubber polymer composite modifier. Materials, 14 (24), 7727. doi:10.3390/ma14247727.
  • Zhang, Q., et al., 2021b. Effect of organic deicing agents on asphalt rheology and analysis of the mechanism. Construction and Building Materials, 284, 122649. doi:10.1016/j.conbuildmat.2021.122649.
  • Zhang, D.M., et al., 2022b. Chemical characteristics analyze of SBS modified bitumen containing composite nanomaterials after aging by FTIR and GPC. Construction and Building Materials, 324, 126522. doi:10.1016/j.conbuildmat.2022.126522.
  • Zhang, X.M., Hoff, Inge and Chen, H., 2022c. Characterization of various bitumen exposed to environmental chemicals. Journal of Cleaner Production, 337, 130610. doi:10.1016/j.jclepro.2022.130610.
  • Zhang, Q.L. and Huang, Z., 2019. Investigation of the micro-characteristics of asphalt mastics under dry-wet and freeze-thaw cycles in a coastal salt environment. Materials, 12 (16), 2627. doi:10.3390/ma12162627.
  • Zhang, R., Tang, N. and Zhu, H., 2022a. The effect of sea salt solution erosion on cohesion, chemical and rheological properties of SBS modified asphalt. Construction and Building Materials, 318, 125923. doi:10.1016/j.conbuildmat.2021.125923.
  • Zou, Y.X., et al., 2021. Effect of different aqueous solutions on physicochemical properties of asphalt binder. Construction and Building Materials, 286, 122810. doi:10.1016/j.conbuildmat.2021.122810.
  • Zou, Y.X., et al., 2022. Investigation of the rheological properties and chemical structure of asphalt under multiple aging conditions of heat, UV and aqueous solution. Materials, 15 (16), 5711. doi:10.3390/ma15165711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.