65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimating the compressive strength of roller compacted concrete using a novel swarm-optimised light gradient boosting machine

Article: 2270765 | Received 06 Jul 2023, Accepted 09 Oct 2023, Published online: 07 Nov 2023

References

  • Abhilash, P.T., Satyanarayana, P.V.V., and Tharani, K., 2021. Prediction of compressive strength of roller compacted concrete using regression analysis and artificial neural networks. Innovative Infrastructure Solutions, 6, 218. doi:10.1007/s41062-021-00590-1.
  • Abut, Y., and Taner Yildirim, S., 2017. Structural design and economic evaluation of roller compacted concrete pavement with recycled aggregates. IOP Conference Series: Materials Science and Engineering, 245, 022064. doi:10.1088/1757-899X/245/2/022064.
  • ACI, 2014. Guide to roller compacted concrete pavements. American Concrete Institute, ACI-327R.
  • Aghaeipour, A., and Madhkhan, M., 2020. Mechanical properties and durability of roller compacted concrete pavement (RCCP) – a review. Road Materials and Pavement Design, 21, 1775–1798. doi:10.1080/14680629.2019.1579754.
  • Ashrafian, A., et al., 2020a. An evolutionary approach to formulate the compressive strength of roller compacted concrete pavement. Measurement, 152, 107309. doi:10.1016/j.measurement.2019.107309.
  • Ashrafian, A., et al., 2020b. Classification-based regression models for prediction of the mechanical properties of roller-compacted concrete pavement. Applied Sciences, 10, 3707.
  • Beale, M.H., Hagan, M.T., and Demuth, H.B., 2018. Neural network toolbox user’s guide. The MathWorks, Inc. Available from: https://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf [Last accessed 28 April 2018].
  • Behnood, A., Verian, K.P., and Modiri Gharehveran, M., 2015. Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength. Construction and Building Materials, 98, 519–529. doi:10.1016/j.conbuildmat.2015.08.124.
  • Bi, J., and Bennett, K., 2003. Regression error characteristic curves. In: Proceedings of 20th Int Conf on Machine Learning (ICML), Washington, DC, USA.
  • Boussetta, I., El Euch Khay, S., and Neji, J., 2020. Experimental testing and modelling of roller compacted concrete incorporating RAP waste as aggregates. European Journal of Environmental and Civil Engineering, 24, 1729–1743. doi:10.1080/19648189.2018.1482792.
  • Chakali, Y., et al., 2021. A PSO-ANN intelligent hybrid model to predict the compressive strength of limestone fillers roller compacted concrete (RCC) to build dams. KSCE Journal of Civil Engineering, 25, 3008–3018. doi:10.1007/s12205-021-1531-6.
  • Chakraborty, D., et al., 2020. A novel construction cost prediction model using hybrid natural and light gradient boosting. Advanced Engineering Informatics, 46, 101201. doi:10.1016/j.aei.2020.101201.
  • Chhorn, C., Hong, S.J., and Lee, S.-W., 2017. A study on performance of roller-compacted concrete for pavement. Construction and Building Materials, 153, 535–543. doi:10.1016/j.conbuildmat.2017.07.135.
  • Chhorn, C., Hong, S.J., and Lee, S.W., 2018. Relationship between compressive and tensile strengths of roller-compacted concrete. Journal of Traffic and Transportation Engineering (English Edition), 5, 215–223. doi:10.1016/j.jtte.2017.09.002.
  • Chou, J.-S., Chen, L.-Y., and Liu, C.-Y., 2022. Forensic-based investigation-optimized extreme gradient boosting system for predicting compressive strength of ready-mixed concrete. J Comput Des Eng, 10, 425–445. doi:10.1093/jcde/qwac133.
  • Conover, W.J., 1999. Practical nonparametric statistics. Hoboken, New Jersey, U.S.: Wiley. ISBN 0-471-16068-7
  • Debbarma, S., and Ransinchung, R.N.G.D., 2022. Using artificial neural networks to predict the 28-day compressive strength of roller-compacted concrete pavements containing RAP aggregates. Road Materials and Pavement Design, 23, 149–167. doi:10.1080/14680629.2020.1822202.
  • Dinesh, A., et al., 2023. Machine learning for strength evaluation of concrete structures – Critical review Materials Today: Proceedings. doi:10.1016/j.matpr.2023.04.090
  • Efron, B., 1991. Regression percentiles using asymmetric squared error loss. Statistica Sinica, 1, 93–125.
  • Emadi, M., and Madani, S.H., 2017. Modeling compressive strength of roller compacted concrete pavement using artificial neural network. ANFIS and Support Vector Machine Journal of Transportation Infrastructure Engineering, 3, 55–78. doi:10.22075/jtie.2017.1823.1176.
  • Fardin, H.E., and Santos, A.Gd, 2020. Roller compacted concrete with recycled concrete aggregate for paving bases. Sustainability, 12, 3154.
  • Hagan, M.T., and Menhaj, M.B., 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993. doi:10.1109/72.329697.
  • Hariri-Ardebili, M.A., and Mahdavi, G., 2023. Generalized uncertainty in surrogate models for concrete strength prediction. Engineering Applications of Artificial Intelligence, 122, 106155. doi:10.1016/j.engappai.2023.106155.
  • Herman, J., and Usher, W., 2017. SALib: An open-source python library for sensitivity analysis. Journal of Open Source Software, 2, 1–2. doi:10.21105/joss.00097.
  • Hesami, S., et al., 2016. Mechanical properties of roller compacted concrete pavement containing coal waste and limestone powder as partial replacements of cement. Construction and Building Materials, 111, 625–636. doi:10.1016/j.conbuildmat.2016.02.116.
  • Hoang, N.-D., 2022. Compressive strength estimation of rice husk Ash-blended concrete using deep neural network regression with an asymmetric loss function. Iranian Journal of Science and Technology – Transactions of Civil Engineering, 47, 1547–1565. doi:10.1007/s40996-022-01015-4
  • Hoang, N.-D., and Nguyen, Q.-L., 2023. Computer vision-based recognition of pavement crack patterns using light gradient boosting machine, deep neural network, and convolutional neural network. Journal of Soft Computing in Civil Engineering, 7, 21–51. doi:10.22115/scce.2023.367276.1547.
  • Hoang, N.-D., Tran, X.-L., and Huynh, T.-C., 2022. Prediction of pile bearing capacity using opposition-based differential flower pollination-optimized least squares support vector regression (ODFP-LSSVR). Advances in Civil Engineering, 2022, 7183700. doi:10.1155/2022/7183700.
  • Huang, Z., et al., 2021. Influence of limestone powder and Fly Ash on the freezing and thawing resistance of roller-compacted concrete. KSCE Journal of Civil Engineering, 25, 2501–2507. doi:10.1007/s12205-021-1457-z.
  • Ke, G., et al., 2017. LightGBM: a highly efficient gradient boosting decision tree. Paper presented at the Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA.
  • Kennedy, J., and Eberhart, R.C., 1995. Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks:1942–1948.
  • Lam, N.-T.-M., Nguyen, D.-L., and Le, D.-H., 2022. Predicting compressive strength of roller-compacted concrete pavement containing steel slag aggregate and fly ash. International Journal of Pavement Engineering, 23, 731–744. doi:10.1080/10298436.2020.1766688.
  • Lin, W.-T., et al., 2019. Circulation fluidized Bed combustion Fly Ash as partial replacement of fine aggregates in roller compacted concrete. Materials, 12, 4204.
  • Lopez-Uceda, A., et al., 2020. Feasibility study of roller compacted concrete with recycled aggregates as base layer for light-traffic roads. Road Materials and Pavement Design, 21, 276–288. doi:10.1080/14680629.2018.1483257.
  • Mardani-Aghabaglou, A., and Ramyar, K., 2013. Mechanical properties of high-volume fly ash roller compacted concrete designed by maximum density method. Construction and Building Materials, 38, 356–364. doi:10.1016/j.conbuildmat.2012.07.109.
  • McRae, G.J., Tilden, J.W., and Seinfeld, J.H., 1982. Global sensitivity analysis—a computational implementation of the Fourier amplitude sensitivity test (FAST). Computers & Chemical Engineering, 6, 15–25. doi:10.1016/0098-1354(82)80003-3.
  • Microsoft, 2022. LightGBM’s documentation. Available from: https://lightgbmreadthedocsio/en/v332/ [Last Accessed July 14 2022].
  • Moayedi, H., et al., 2020. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering, theory and applications. Neural Computing and Applications, 32, 495–518. doi:10.1007/s00521-019-04109-9.
  • Nasr, D., et al., 2023. Evaluating the influence of carbon fiber on the mechanical characteristics and electrical conductivity of roller-compacted concrete containing waste ceramic aggregates exposed to freeze-thaw cycling. Advances in Materials Science and Engineering, 2023, 1308387. doi:10.1155/2023/1308387.
  • Nguyen, N.-H., et al., 2022. Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model. Journal of Building Engineering, 52, 104302. doi:10.1016/j.jobe.2022.104302.
  • Nguyen, T.-D., et al., 2023. Artificial intelligence algorithms for prediction and sensitivity analysis of mechanical properties of recycled aggregate concrete: a review. Journal of Building Engineering, 66, 105929. doi:10.1016/j.jobe.2023.105929.
  • Pavan, S., and Krishnarao, S., 2014. Effect of Fly ash on strength characteristics of roller compacted concrete pavement IOSR. Journal of Mechanical and Civil Engineering, 11, 04–08. doi:10.9790/1684-11620408.
  • Pedregosa, F., et al., 2011. Scikit-learn: machine learning in python. Journal of Machine Learning Research, 12, 2825–2830. https://jmlrcsailmitedu/papers/v12/pedregosa11ahtml
  • Pham, A.-D., Hoang, N.-D., and Nguyen, Q.-T., 2016. Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. Journal of Computing in Civil Engineering, 30, 06015002. doi:10.1061/(ASCE)CP.1943-5487.0000506.
  • Python, 2023. tkinter — Python interface to Tcl/Tk. Available from: https://docspythonorg/3/library/tkinterhtml [Last Accessed 5 July 2023].
  • Rahmani, E., Sharbatdar, M.K., and Beygi, M.H.A., 2020. A comprehensive investigation into the effect of water to cement ratios and cement contents on the physical and mechanical properties of roller compacted concrete pavement (RCCP). Construction and Building Materials, 253, 119177. doi:10.1016/j.conbuildmat.2020.119177.
  • Rao, S.K., Sravana, P., and Rao, T., 2015. Strength and compaction characteristics of fly ash roller compacted concrete. International Journal of Scientific Research in Knowledge, 3, 260–269. doi:10.12983/ijsrk-2015-p0260-0269.
  • Rao, S.K., Sravana, P., and Rao, T.C., 2016a. Abrasion resistance and mechanical properties of roller compacted concrete with GGBS. Construction and Building Materials, 114, 925–933. doi:10.1016/j.conbuildmat.2016.04.004.
  • Rao, S.K., Sravana, P., and Rao, T.C., 2016b. Experimental studies in ultrasonic pulse velocity of roller compacted concrete pavement containing fly ash and M-sand. International Journal of Pavement Research and Technology, 9, 289–301. doi:10.1016/j.ijprt.2016.08.003.
  • Saluja, S., et al., 2019. Assessing the effect of GGBS content and aggregate characteristics on drying shrinkage of roller compacted concrete. Construction and Building Materials, 201, 72–80. doi:10.1016/j.conbuildmat.2018.12.179.
  • Selvam, M., et al., 2022. Utilization of alternative aggregates for roller compacted concrete pavements – A state-of-the-art review. Construction and Building Materials, 317, 125838. doi:10.1016/j.conbuildmat.2021.125838.
  • Selvam, M., and Singh, S., 2023. Comparative investigation of laboratory and field compaction techniques for designing roller compacted concrete pavements (RCCP). International Journal of Pavement Engineering, 24, 2177850. doi:10.1080/10298436.2023.2177850.
  • Şengün, E., et al., 2019. The effects of compaction methods and mix parameters on the properties of roller compacted concrete mixtures. Construction and Building Materials, 228, 116807. doi:10.1016/j.conbuildmat.2019.116807.
  • Shen, L., et al., 2020. The mechanical property and frost resistance of roller compacted concrete by mixing silica fume and limestone powder: experimental study. Construction and Building Materials, 239, 117882. doi:10.1016/j.conbuildmat.2019.117882.
  • Silva, R.V., de Brito, J., and Dhir, R.K., 2016. Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. Journal of Cleaner Production, 112, 2171–2186. doi:10.1016/j.jclepro.2015.10.064.
  • Thai, H.-T., 2022. Machine learning for structural engineering: a state-of-the-art review. Structures, 38, 448–491. doi:10.1016/j.istruc.2022.02.003.
  • Thi Mai, H.-V., Hoang Trinh, S., and Ly, H.-B., 2023. Enhancing compressive strength prediction of roller compacted concrete using machine learning techniques. Measurement, 218, 113196. doi:10.1016/j.measurement.2023.113196
  • Tien Bui, D., Nhu, V.-H., and Hoang, N.-D., 2018. Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and multi-layer perceptron neural network. Advanced Engineering Informatics, 38, 593-604. doi:10.1016/j.aei.2018.09.005
  • Vapnik, V.N., 1998. Statistical learning theory. Hoboken, New Jersey, U.S.: Wiley. ISBN-10: 0471030031
  • Wong, T., and Yeh, P., 2020. Reliable accuracy estimates from k-fold cross validation. IEEE Transactions on Knowledge and Data Engineering, 32, 1586–1594. doi:10.1109/TKDE.2019.2912815.
  • Yu, B., et al., 2022. Modeling of true triaxial strength of rocks based on optimized genetic programming. Applied Soft Computing, 129, 109601. doi:10.1016/j.asoc.2022.109601.
  • Zhang, G., et al., 2022. Reliability assessment of compressive and splitting tensile strength prediction of roller compacted concrete pavement: introducing MARS-GOA-MCS. International Journal of Pavement Engineering, 23, 5030–5047. doi:10.1080/10298436.2021.1990920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.