59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis of coloured microsurfacing with electric arc furnace steel slag as an aggregate replacement: a laboratory evaluation

, , &
Article: 2276173 | Received 17 Feb 2022, Accepted 20 Oct 2023, Published online: 13 Nov 2023

References

  • Abd El-Hakim, R.T., et al., 2022. Performance evaluation of steel slag high performance concrete for sustainable pavements. International Journal of Pavement Engineering, 23 (11), 3819–3837. doi:10.1080/10298436.2021.1922908.
  • Amani, A., et al., 2021. Mechanical properties of concrete pavements containing combinations of waste marble and granite powders. International Journal of Pavement Engineering, 22 (12), 1531–1540. doi:10.1080/10298436.2019.1702662.
  • Ameli, A., et al., 2020. Experimental investigation of the influence of nano TiO2 on rheological properties of binders and performance of stone matrix asphalt mixtures containing steel slag aggregate. Construction and Building Materials, 265, 120750. doi:10.1016/j.conbuildmat.2020.120750.
  • Ameri, M., Hesami, S., and Goli, H., 2013. Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag. Construction and Building Materials, 49, 611–617. doi:10.1016/j.conbuildmat.2013.08.034.
  • Asi, I.M., Qasrawi, H.Y., and Shalabi, F.I., 2007. Use of steel slag aggregate in asphalt concrete mixes. Canadian Journal of Civil Engineering, 34 (8), 902–911. doi:10.1139/l07-025.
  • ASTM D1076, 2021. Standard specification for rubber—concentrated, ammonia stabilized, creamed, and centrifuged natural latex. American Society of Testing and Materials.
  • ASTM D6372, 2015. Standard practice for design, testing, and construction of microsurfacing. American Society of Testing and Materials.
  • Autelitano, F., and Giuliani, F., 2019. Daytime and nighttime color appearance of pigmented asphalt surface treatments. Construction and Building Materials, 207, 98–107. doi:10.1016/j.conbuildmat.2019.02.100.
  • Autelitano, F., Maternini, G., and Giuliani, F., 2021. Colorimetric and photometric characterisation of clear and coloured pavements for urban spaces. Road Materials and Pavement Design, 22 (5), 1207–1218. doi:10.1080/14680629.2019.1662832.
  • Aziz, M.M.A., et al., 2014. Characterisation and utilisation of steel slag for the construction of roads and highways. Materials Research Innovations, 18 (sup6), S6-255–S6-259. doi:10.1179/1432891714Z.000000000967.
  • Barišić, I., Marković, B., and Zagvozda, M., 2019. Freeze–thaw resistance assessment of cement-bound steel slag aggregate for pavement structures. International Journal of Pavement Engineering, 20 (4), 448–457. doi:10.1080/10298436.2017.1309192.
  • Barišić, I., Netinger Grubeša, I., and Hackenberger Kutuzović, B., 2017. Multidisciplinary approach to the environmental impact of steel slag reused in road construction. Road Materials and Pavement Design, 18 (4), 897–912. doi:10.1080/14680629.2016.1197143.
  • Crucho, J., Picado-Santos, L., and Neves, J., 2022. Cement-treated pavement layers incorporating construction and demolition waste and coconut fibres: a review. International Journal of Pavement Engineering, 23 (14), 4877–4896. doi:10.1080/10298436.2021.1984475.
  • Dong, Q., et al., 2021. Recycling of steel slag aggregate in Portland cement concrete: an overview. Journal of Cleaner Production, 282, 124447. doi:10.1016/j.jclepro.2020.124447.
  • Esfahani, M.A., and Khatayi, A., 2022. Effect of type and quantity of emulsifier in bitumen polymer emulsion on microsurfacing performance. International Journal of Pavement Engineering, 23 (4), 957–971. doi:10.1080/10298436.2020.1784416.
  • Georgiou, P., and Loizos, A., 2021. Environmental assessment of warm mix asphalt incorporating steel slag and high reclaimed asphalt for wearing courses: a case study. Road Materials and Pavement Design, 22 (sup1), S662–S671. doi:10.1080/14680629.2021.1906305.
  • Golalipour, A., et al., 2012. Effect of aggregate gradation on rutting of asphalt pavements. Procedia - Social and Behavioral Sciences, 53, 440–449. doi:10.1016/j.sbspro.2012.09.895.
  • Hainin, M.R., et al., 2014. Utilisation of steel slag as an aggregate replacement in porous asphalt mixtures. Jurnal Teknologi, 69 (1), 67–73.
  • Hu, W., Shu, X., and Huang, B., 2019. Sustainability innovations in transportation infrastructure: an overview of the special volume on sustainable road paving. Journal of Cleaner Production, 235, 369–377. doi:10.1016/j.jclepro.2019.06.258.
  • ISSA, 2017a. Laboratory test method for wet track abrasion of slurry surfacing systems. Technical Bulletin 100. International Slurry Surfacing Association.
  • ISSA, 2017b. Outline guide design procedure for slurry seal. Technical Bulletin 111. International Slurry Surfacing Association.
  • ISSA, 2017c. Test method for measurement of excess asphalt in bituminous mixtures by use of a loaded wheel tester and sand adhesion. Technical Bulletin 109. International slurry surfacing association.
  • ISSA, 2017d. Test method for measurement of stability and resistance to compaction, vertical and lateral displacement of multilayered fine aggregate cold mixes. Technical Bulletin 147. International Slurry Surfacing Association.
  • ISSA, 2017e. Test method to classify emulsified asphalt/aggregate mixture systems by modified cohesion tester measurement of set and cure characteristics. Technical Bulletin 139. International Slurry Surfacing Association.
  • ISSA, 2020. Recommended performance guideline for micro surfacing A143. International Slurry Surfacing Association.
  • Izadi, A., et al., 2022. Mix design and performance evaluation of coloured slurry seal mixture containing natural iron oxide red pigments. Road Materials and Pavement Design, 23 (4), 907–924. doi:10.1080/14680629.2020.1860803.
  • Jullien, A., et al., 2010. Alternative materials for roads. Road Materials and Pavement Design, 11 (1), 203–212. doi:10.1080/14680629.2010.9690267.
  • Jung, D., and Young, K., 1998. Relationship between asphalt binder viscosity and pavement rutting. Transportation Research Board, ID: 00-0112.
  • Kavussi, A., and Qazizadeh, M.J., 2014. Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging. Construction and Building Materials, 72, 158–166. doi:10.1016/j.conbuildmat.2014.08.052.
  • Keymanesh, M.R., et al., 2021. Mix design and performance evaluation of microsurfacing containing electric arc furnace (EAF) steel slag filler. Construction and Building Materials, 269, 121336. doi:10.1016/j.conbuildmat.2020.121336.
  • Lam, N.-T.-M., Nguyen, D.-L., and Le, D.-H., 2022. Predicting compressive strength of roller-compacted concrete pavement containing steel slag aggregate and fly ash. International Journal of Pavement Engineering, 23 (3), 731–744. doi:10.1080/10298436.2020.1766688.
  • Ma, L., et al., 2020. Expansion inhibition of steel slag in asphalt mixture by a surface water isolation structure. Road Materials and Pavement Design, 21 (8), 2215–2229. doi:10.1080/14680629.2019.1601588.
  • Masoudi, S., Abtahi, S.M., and Goli, A., 2017. Evaluation of electric arc furnace steel slag coarse aggregate in warm mix asphalt subjected to long-term aging. Construction and Building Materials, 135, 260–266. doi:10.1016/j.conbuildmat.2016.12.177.
  • Motevalizadeh, S.M., Sedghi, R., and Rooholamini, H., 2020. Fracture properties of asphalt mixtures containing electric arc furnace slag at low and intermediate temperatures. Construction and Building Materials, 240, 117965. doi:10.1016/j.conbuildmat.2019.117965.
  • Palankar, N., Ravi Shankar, A.U., and Mithun, B.M., 2017. Investigations on alkali-activated slag/Fly Ash concrete with steel slag coarse aggregate for pavement structures. International Journal of Pavement Engineering, 18 (6), 500–512. doi:10.1080/10298436.2015.1095902.
  • Pattanaik, M.L., et al., 2021. Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries. Road Materials and Pavement Design, 22 (2), 268–292. doi:10.1080/14680629.2019.1620120.
  • Pattanaik, M.L., Choudhary, R., and Kumar, B., 2019. Moisture susceptibility of open-graded friction course mixes with EAF steel slag and modified binders. Advances in Civil Engineering Materials, 8 (1), 248–266. doi:10.1520/ACEM20180158.
  • Poursoltani, M., and Hesami, S., 2020. Performance evaluation of microsurfacing mixture containing reclaimed asphalt pavement. International Journal of Pavement Engineering, 21 (12), 1491–1504. doi:10.1080/10298436.2018.1551544.
  • Rodríguez-Fernández, I., et al., 2020. Mechanical, environmental and economic feasibility of highly sustainable porous asphalt mixtures. Construction and Building Materials, 251, 118982. doi:10.1016/j.conbuildmat.2020.118982.
  • Rodríguez-Fernández, I., et al., 2021. Technical feasibility for the replacement of high rates of natural aggregates in asphalt mixtures. International Journal of Pavement Engineering, 22 (8), 940–949. doi:10.1080/10298436.2019.1654102.
  • Shen, D.-H., Wu, C.-M., and Du, J.-C., 2009. Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and Building Materials, 23 (1), 453–461.
  • Shiha, M., El-Badawy, S., and Gabr, A., 2020. Modeling and performance evaluation of asphalt mixtures and aggregate bases containing steel slag. Construction and Building Materials, 248, 118710. doi:10.1016/j.conbuildmat.2020.118710.
  • Skaf, M., et al., 2017. EAF slag in asphalt mixes: a brief review of its possible re-use. Resources, Conservation and Recycling, 120, 176–185. doi:10.1016/j.resconrec.2016.12.009.
  • Stehlik, D., et al., 2015. Pavement construction using road waste building material – from a model to reality. Road Materials and Pavement Design, 16 (sup1), 314–329. doi:10.1080/14680629.2015.1029680.
  • Tang, P., et al., 2018. Investigation of rheological properties of light colored synthetic asphalt binders containing different polymer modifiers. Construction and Building Materials, 161, 175–185. doi:10.1016/j.conbuildmat.2017.11.098.
  • Tarefder, R.A., Zaman, M., and Hobson, K., 2003. A laboratory and statistical evaluation of factors affecting rutting. International Journal of Pavement Engineering, 4 (1), 59–68. doi:10.1080/10298430310001593263.
  • Wang, G.C., 2016. Slag use in asphalt paving. In: G. C. Wang, ed., The utilization of slag in civil infrastructure construction. Woodhead Publishing, Greenville, North Carolina. 201–238. https://doi.org/10.1016/B978-0-08-100381-7.00010-0
  • Wang, S., et al., 2020. Mechanical strengths and durability properties of pervious concretes with blended steel slag and natural aggregate. Journal of Cleaner Production, 271, 122590. doi:10.1016/j.jclepro.2020.122590.
  • Wu, S., et al., 2016. Performance evaluation of Hot Mix asphalt containing recycled asphalt shingles in Washington state. Journal of Materials in Civil Engineering, 28 (1), 04015088. doi:10.1061/(ASCE)MT.1943-5533.0001357.
  • Yang, W.-r., et al., 2022. Tire-track resistance performance of acrylic resin emulsion coatings for colored asphalt pavements. Road Materials and Pavement Design, 23 (4), 874–889. doi:10.1080/14680629.2020.1847727.
  • Yap, S.P., et al., 2018. Characterization of pervious concrete with blended natural aggregate and recycled concrete aggregates. Journal of Cleaner Production, 181, 155–165. doi:10.1016/j.jclepro.2018.01.205.
  • Yildirim, I.Z., and Prezzi, M., 2022. Subgrade stabilisation mixtures with EAF steel slag: an experimental study followed by field implementation. International Journal of Pavement Engineering, 23 (6), 1754–1767. doi:10.1080/10298436.2020.1823389.
  • Zalnezhad, M., and Hesami, E., 2020. Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture. Journal of Traffic and Transportation Engineering (English Edition), 7 (2), 215–226. doi:10.1016/j.jtte.2018.12.005.
  • Ziaee, S.A., and Behnia, K., 2020. Evaluating the effect of electric arc furnace steel slag on dynamic and static mechanical behavior of warm mix asphalt mixtures. Journal of Cleaner Production, 274, 123092. doi:10.1016/j.jclepro.2020.123092.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.