73
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Transition probability matrices for pavement deterioration modelling with variable duty cycle times

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2278694 | Received 12 Jun 2023, Accepted 27 Oct 2023, Published online: 16 Nov 2023

References

  • AASHTO, 1993. Guide for design of pavement structures. Washington, DC: American Association of State Highway and Transportation Officials.
  • AASHTO (2012). Pavement management guide, 2nd ed. American Association of State Highway and Transportation Officials, Washington, DC.
  • Abaza, K. A., 2004. Deterministic performance prediction model for rehabilitation and management of flexible pavement. International Journal of Pavement Engineering, 5 (2), 111–121. doi:10.1080/10298430412331286977
  • Abaza, K. A., 2016a. Back-calculation of transition probabilities for Markovian-based pavement performance prediction models. International Journal of Pavement Engineering, 17 (3), 253–264. doi:10.1080/10298436.2014.993185
  • Abaza, K. A., 2016b. Simplified staged-homogenous Markov model for flexible pavement performance prediction. Road Materials and Pavement Design, 17 (2), 365–381. doi:10.1080/14680629.2015.1083464
  • Abaza, K. A., 2017. Empirical approach for estimating the pavement transition probabilities used in non-homogenous Markov chains. International Journal of Pavement Engineering, 18 (2), 128–137. doi:10.1080/10298436.2015.1039006
  • Abaza, K. A., and Murad, M. M., 2010. Pavement rehabilitation project ranking approach using probabilistic long-term performance indicators. Transportation Research Record: Journal of the Transportation Research Board, 2153 (1), 3–12. doi:10.3141/2153-01
  • Abdelaziz, N., et al., 2020. International roughness index prediction model for flexible pavements. International Journal of Pavement Engineering, 21 (1), 88–99. doi:10.1080/10298436.2018.1441414
  • Adedimila, A. S., Olutaiwo, A. O., and Kehinde, O., 2009. Markovian probabilistic pavement performance prediction models for a developing country. Journal of Engineering and Applied Sciences, 4 (1), 13–26.
  • Alaswadko, N. H. A, 2016. Deterioration modelling of granular pavements for rural arterial roads. Thesis (PhD). Melbourne, Australia: Swinburne University of Technology.
  • Alaswadko, N., et al., 2019. Modelling roughness progression of sealed granular pavements: a new approach. International Journal of Pavement Engineering, 20 (2), 222–232. doi:10.1080/10298436.2017.1283689
  • Alaswadko, N. H., Hassan, R. A., and Mohammed, B. N., 2018. Empirical roughness progression models of heavy duty rural pavements. International Journal of Civil and Environmental Engineering, 12 (3), 301–307.
  • Alaswadko, N., and Hwayyis, K., 2022. An approach to investigate the supplementary inconsistency between time series data for predicting road pavement performance models. International Journal of Pavement Engineering, 1–15. doi:10.1080/10298436.2022.2045017
  • Albuquerque, F. S., and Núñez, W. P., 2011. Development of roughness prediction models for low-volume road networks in northeast Brazil. Transportation Research Record: Journal of the Transportation Research Board, 2205, 198–205. doi:10.3141/2205-25
  • Amin, M. S. R., and Amador-Jiménez, L. E., 2016. Pavement management with dynamic traffic and artificial neural network: a case study of Montreal. Canadian Journal of Civil Engineering, 43 (3), 241–251. doi:10.1139/cjce-2015-0299
  • ASTM, 2020. ASTM E867-06(2020). Standard terminology relating to vehicle-pavement systems. West Conshohocken, PA: ASTM International.
  • Bandara, N., and Gunaratne, M., 2001. Current and future pavement maintenance prioritization based on rapid visual condition evaluation. Journal of Transportation Engineering, 127 (2), 116–123. doi:10.1061/(ASCE)0733-947X(2001)127:2(116)
  • BOE (Boletin Oficial del Estado), 2015. Ley 7/2015, de 29 de septiembre, de Carreteras. (BOE de 30 de septiembre de 2015). Madrid: Boletín Oficial del Estado.
  • Budras, J., 2001. A synopsis on the current equipment used for measuring pavement smoothness. Washington, DC: Federal Highway Administration.
  • Butt, A. A., et al., 1987. Pavement performance prediction model using the Markov process. Transportation Research Record, 1123, 12–19.
  • Carnahan, J. V., 1988. Analytical framework for optimizing pavement maintenance. Journal of Transportation Engineering, 114 (3), 307–322. doi:10.1061/(ASCE)0733-947X(1988)114:3(307)
  • Chatti, K., and Zaabar, I., 2012. Estimating the effects of pavement condition on vehicle operating costs. NCHRP report 720. Washington, DC: Transportation Research Board.
  • Chou, E., Pulugurta, H., and Datta, D., 2008. Pavement forecasting models. Rep. No. FHWA/OH-2008/3. Columbus, OH: Ohio DOT.
  • Fani, A., et al., 2022. Pavement maintenance and rehabilitation planning optimisation under budget and pavement deterioration uncertainty. International Journal of Pavement Engineering, 23 (2), 414–424. doi:10.1080/10298436.2020.1748628
  • Flintsch, G.W., and McGhee, K.K., 2009. Quality management of pavement condition data collection. Washington, DC: Transportation Research Board, National Cooperative Highway Research Program Report 401.
  • García de Soto, B., et al., 2018. Predicting road traffic accidents using artificial neural network models. Infrastructure Asset Management, 5 (4), 132–144. doi:10.1680/jinam.17.00028
  • Gharieb, M., et al., 2022. Modeling of pavement roughness utilizing artificial neural network approach for Laos national road network. Journal of Civil Engineering and Management, 28 (4), 261–277. doi:10.3846/jcem.2022.15851
  • Golroo, A., and Tighe, S., 2009. Use of soft computing applications to model pervious concrete pavement condition in cold climates. Journal of Transportation Engineering, 135 (11), 791–800. doi:10.1061/(ASCE)TE.1943-5436.0000052
  • Gurney, 1997. An introduction to neural networks. London.: CRC Press.
  • Haas, R., Hudson, W.R., and Zaniewski, J.P., 1994. Modern pavement management. Krieger, FL: USA.
  • Hassan, R., Lin, O., and Thananjeyan, A., 2017a. A comparison between three approaches for modelling deterioration of five pavement surfaces. International Journal of Pavement Engineering, 18 (1), 26–35. doi:10.1080/10298436.2015.1030744
  • Hassan, R., Lin, O., and Thananjeyan, A., 2017b. Probabilistic modelling of flexible pavement distresses for network management. International Journal of Pavement Engineering, 18 (3), 216–227. doi:10.1080/10298436.2015.1065989
  • Hillier, F.S., and Lieberman, G.J., 1990. Introduction to operations research (5th ed.). New York, NY: MacGraw-Hill.
  • Hong, F., 2014. Asphalt pavement overlay service life reliability assessment based on non-destructive technologies. Structure and Infrastructure Engineering, 10 (6), 767–776. doi:10.1080/15732479.2012.759978
  • Hong, H. P., and Wang, S. S., 2003. Stochastic modeling of pavement performance. International Journal of Pavement Engineering, 4 (4), 235–243. doi:10.1080/10298430410001672246
  • Hudson, W. R., Haas, R., and Pedigo, R. D., 1979. Pavement management system development. national cooperative highway research program report 215, highway research record 407. Washington, DC, USA: Transportation Research Board, National Research Council.
  • Hwayyis, K., Hassan, R., and Fahey, M. T., 2022. Factors affecting performance of sprayed seals in rural Victoria. International Journal of Pavement Engineering, 23 (7), 2278–2292. doi:10.1080/10298436.2020.1851030
  • Isaacson, D.L., and Madsen, R.W., 1976. Markov chains: theory and applications. New York, NY: Wiley.
  • Ismail, A., et al., 2014. Laboratory investigation on the strength characteristics of cement-treated base. Applied mechanics and materials, 507, 353–360. 10.4028/www.scientific.net/AMM.507.353.
  • Jiang, Y., et al., 2020. Development and application of skid resistance fog seal for pavements. Coatings, 10 (9), 867. doi:10.3390/coatings10090867
  • Justo-Silva, R., Ferreira, A, and Flintsh, G, 2021. Review on machine learning techniques for developing pavement performance prediction models. Sustainability, 13 (9), 5248. doi:10.3390/su13095248
  • Kerali, H.R., and Snaith, M.S., 1992. NETCOM: the TRL visual condition model for road networks. Crowthorne: Transport Research Laboratory. Contractor Report No. 921.
  • Kobayashi, K., Do, M., and Han, D., 2010. Estimation of markovian transition probabilities for pavement deterioration forecasting. KSCE Journal of Civil Engineering, 14, 343–351. doi:10.1007/s12205-010-0343-x
  • Kulkarni, R. B., 1984. Dynamic decision model for a pavement management system. Transportation Research Record, 997, 11–18.
  • Lethanh, N., and Adey, B. T., 2012. A hidden Markov model for modeling pavement deterioration under incomplete monitoring data. International Journal of Civil and Environmental Engineering, 6 (1), 1–8.
  • Lethanh, N., and Adey, B. T., 2013. Use of exponential hidden Markov models for modelling pavement deterioration. International Journal of Pavement Engineering, 14 (7), 645–654. doi:10.1080/10298436.2012.715647
  • Li, N., Haas, R., and Xie, W.C., 1997. Development of a new asphalt pavement performance prediction model. Canadian Journal of Civil Engineering, 24 (4), 547–559. doi:10.1139/l97-001
  • Linares-Unamunzaga, A., et al., 2019. Flexural strength prediction models for soil–cement from unconfined compressive strength at seven days. Materials, 12 (3), 387. doi:10.3390/ma12030387
  • MacLeod, D. R., and Walsh, R., 1998. Markov modeling: A case study 4th International Conference on Managing Pavements. May 17-21Durban, South AfricaWashington, DC: Transportation Research Board. 298–309.
  • Madanat, S., Mishalani, R., and Ibrahim, W. H. W., 1995. Estimation of infrastructure transition probabilities from condition rating data. Journal of Infrastructure Systems, 1 (2), 120–125. doi:10.1061/(ASCE)1076-0342(1995)1:2(120)
  • Mazari, M., and Rodriguez, D. D., 2016. Prediction of pavement roughness using a hybrid gene expression programming-neural network technique. Journal of Traffic and Transportation Engineering (English Edition), 3 (5), 448–455. doi:10.1016/j.jtte.2016.09.007
  • MFOM (Ministerio de Fomento), 2003. FOM/3640/2003, de 28 de noviembre, por la que se aprueba la norma 6.1-IC “Secciones de Firme”, de la Instrucción de Carreteras. Madrid: Ministerio de Fomento.
  • MFOM (Ministerio de Fomento), 2014. Orden FOM/2523/2014, de 12 de diciembre, por la que se actualizan determinados artículos del Pliego de Prescripciones Técnicas Generales para obras de carreteras y puentes, relativos a materiales básicos, a firmes y pavimentos, y a señalización, balizamiento y sistemas de contención de vehículos. BOE de 3 de enero de 2015. Ministerio de Fomento; Madrid, Spain.
  • Mohammadi, A., Amador-Jimenez, L., and Elsaid, F., 2019. Simplified pavement performance modeling with only two-time series observations: a case study of Montreal island. Journal of Transportation Engineering, Part B: Pavements, 145 (4), 005019004. doi:10.1061/JPEODX.0000138
  • MTMAU (Ministerio de Transportes, Movilidad y Agenda Urbana), 2022. Catálogo Oficial de Carreteras. Longitud de carreteras de la RCE por tipo de vía. Situación a fecha: 31/12/2021. Madrid: Ministerio de Transportes, Movilidad y Agenda Urbana. Accessed on 26/02/2023 https://www.mitma.gob.es/carreteras/catalogo-y-evolucion-de-la-red-de-carreteras.
  • Mubaraki, M., 2010. Predicting deterioration for the Saudi Arabia urban road network. Thesis (PhD) University of Nottingham.
  • Múčka, P., 2017. International roughness index specifications around the world. Road Materials and Pavement Design, 18 (4), 929–965. doi:10.1080/14680629.2016.1197144
  • Odoki, J. B., Kerali, H. G. R. (2000). Analytical framework and model descriptions. Highway development and management (HDM-4) volume 4. Washington, DC: World Road Association.
  • Olowosulu, A. T., et al., 2022. Development of framework for performance prediction of flexible road pavement in Nigeria using fuzzy logic theory. International Journal of Pavement Engineering, 23 (11), 3809–3818. doi:10.1080/10298436.2021.1922907
  • Ortiz-García, J. J., Costello, S. B., and Snaith, M. S., 2006. Derivation of transition probability matrices for pavement deterioration modeling. Journal of Transportation Engineering, 132 (2), 141–161. doi:10.1061/(ASCE)0733-947X(2006)132:2(141)
  • Osorio-Lird, A., et al., 2018. Application of Markov chains and Monte Carlo simulations for developing pavement performance models for urban network management. Structure and Infrastructure Engineering, 14 (9), 1169–1181. doi:10.1080/15732479.2017.1402064
  • Perera, R.W., and Kohn, S.D., 2002. Issues in pavement smoothness: a summary report. Washington, DC: Transportation research board, national research council, NCHRP Web document 42. Contractor’s Final Report.
  • Pérez-Acebo, H., et al., 2019. Rigid pavement performance models by means of Markov Chains with half-year step time. International Journal of Pavement Engineering, 20 (7), 830–843. doi:10.1080/10298436.2017.1353390
  • Pérez-Acebo, H., et al., 2020a. A skid resistance prediction model for an entire road network. Construction and Building Materials, 262, 120041. doi:10.1016/j.conbuildmat.2020.120041
  • Pérez-Acebo, H., et al., 2020b. IRI performance models for flexible pavements in two-lane roads until first maintenance and/or rehabilitation work. Coatings, 10 (2), 97. doi:10.3390/coatings10020097
  • Pérez-Acebo, H., et al., 2021. Modeling the international roughness index performance on semi-rigid pavements in single carriageway roads. Construction and Building Materials, 272, 121665. doi:10.1016/j.conbuildmat.2020.121665
  • Pérez-Acebo, H., et al., 2022a. A simplified skid resistance predicting model for a freeway network to be used in a pavement management system. International Journal of Pavement Engineering, doi:.10.1080/10298436.2021.2020266.
  • Pérez-Acebo, H., Bejan, S., and Gonzalo-Orden, H., 2018. Transition probability matrices for flexible pavement deterioration models with half-year cycle time. International Journal of Civil Engineering, 16 (9), 1045–1056. doi:10.1007/s40999-017-0254-z
  • Perez-Acebo, H., Romo-Martín, A., and Findley, D., 2022b. Spatial distribution and the facility evaluation of the service and rest areas in the toll motorway network of the European union. Applied Spatial Analysis and Policy, 15 (3), 821–845. doi:10.1007/s12061-021-09421-3
  • Pulugurta, H., Shao, Q., and Chou, Y. J., 2009. Pavement condition prediction using Markov process. Journal of Statistics and Management Systems, 12 (5), 853–871. doi:10.1080/09720510.2009.10701426
  • Salas, M. A., and Pérez-Acebo, H., 2018a. Introduction of recycled polyurethane foam in mastic asphalt. Gradevinar, 70 (5), 403–412.
  • Salas, M. A., Pérez-Acebo, H, Calderón, V., et al., 2018b. Bitumen modified with recycled polyurethane foam for employment in hot mix asphalt. Ingeniería e Investigación, 38 (1), 60–66. doi:10.15446/ing.investig.v38n1.65631
  • Sandra, A. K., and Sarkar, A. K., 2013. Development of a model for estimating international roughness index from pavement distresses. International Journal of Pavement Engineering, 14 (8), 715–724. doi:10.1080/10298436.2012.703322
  • Sayers, M.W., 1995. On the calculation of international roughness index from longitudinal road profile. Transportation Research Record, 1051, 1–12.
  • Sayers, M.W., Gillespie, T.D., and Paterson, W.D.O., 1986b. Guidelines for conducting and calibrating road roughness measurements. Technical Paper Number 46. Washington, DC, USA: The World Bank.
  • Sayers, M.W., Gillespie, T.D., and Queiroz, C.A.V., 1986a. International experiment to establish correlations and standard calibration methods for road roughness measurement; Technical paper number 45. The world bank: Washington, DC, USA.
  • Shahnazari, H., et al., 2012. Application of soft computing for prediction of pavement condition index. Journal of Transportation Engineering, 138 (12), 1495–1506. doi:10.1061/(ASCE)TE.1943-5436.0000454
  • Sidess, A., Ravina, A., and Oged, E., 2022. A model for predicting the deterioration of the international roughness index. International Journal of Pavement Engineering, 23 (5), 1393–1403. doi:10.1080/10298436.2020.1804062
  • Smith, K. L., et al., 1997. Smoothness specifications for pavements. NCHRP Web Document 1 (Project 1-31). Washington, DC: Transportation Research Board.
  • Smith, K., and Ram, P., 2016. Measuring and specifying pavement smoothness. Washington, DC: Federal highway administration (FHWA).
  • Sollazzo, G., Fwa, T. F., and Bosurgi, G., 2017. An ANN model to correlate roughness and structural performance in asphalt pavements. Construction and Building Materials, 134, 684–693. doi:10.1016/j.conbuildmat.2016.12.186
  • Soncim, S. P., et al., 2018. Development of probabilistic models for predicting roughness in asphalt pavement. Road Materials and Pavement Design, 19 (6), 1448–1457. doi:10.1080/14680629.2017.1304233
  • Tabatabaee, N., and Ziyadi, M., 2013. Bayesian approach to updating Markov-based models for predicting pavement performance. Transportation Research Record: Journal of the Transportation Research Board, 2366 (1), 34–42. doi:10.3141/2366-04
  • Thomas, O., and Sobanjo, J., 2013. Comparison of Markov chain and semi-Markov models for crack deterioration on flexible pavements. Journal of Infrastructure Systems, 19 (2), 186–195. doi:10.1061/(ASCE)IS.1943-555X.0000112
  • Tjan, A., and Pitaloka, D., 2005. Future prediction of pavement condition using Markov probability transition matrix. In Proceedings of the Eastern Asia Society for Transportation Studies, 5, 772–782.
  • Uddin, W. (2006). Pavement management systems. In Fwa, T.F., ed. The handbook of highway engineering, Taylor & Francis, 18-1–18-70. Boca Raton, FL.
  • Wang, K., Zaniewski, J., and Way, G., 1994. Probabilistic behavior of pavements. Journal of Transportation Engineering, 120, 358–375. doi:10.1061/(ASCE)0733-947X(1994)120:3(358)
  • Wen, T., et al., 2022. Automated pavement distress segmentation on asphalt surfaces using a deep learning network. International Journal of Pavement Engineering, doi:10.1080/10298436.2022.2027414.
  • Xuan, D. X., et al., 2012. Mechanical properties of cement-treated aggregate material – A review. Materials & Design, 33, 496–502. doi:10.1016/j.matdes.2011.04.055
  • Yamany, M. S., et al., 2020. Characterizing the performance of interstate flexible pavements using artificial neural networks and random parameters regression. Journal of Infrastructure Systems, 26 (2), 04020010. doi:10.1061/(ASCE)IS.1943-555X.0000542
  • Yamany, M. S., and Abraham, D. M., 2021. Hybrid approach to incorporate preventive maintenance effectiveness into probabilistic pavement performance models. Journal of Transportation Engineering, Part B: Pavements, 147 (1), 004020077. doi:10.1061/JPEODX.0000227
  • Yamany, M. S., Abraham, D. M., and Labi, S., 2019. Probabilistic modeling of pavement performance using Markov chains: a state-of-the-art review. In ASCE international conference on transportation & development, Virginia, USA.
  • Yamany, M. S., Abraham, D. M., and Labi, S., 2021. Comparative analysis of Markovian methodologies for modeling infrastructure system performance. Journal of Infrastructure Systems, 27 (2), 04021003. doi:10.1061/(ASCE)IS.1943-555X.0000604
  • Yang, J., et al., 2005. Use of recurrent Markov chains for modeling the crack performance of flexible pavements. Journal of Transportation Engineering, 131 (11), 861–872. doi:10.1061/(ASCE)0733-947X(2005)131:11(861)
  • Yang, J., et al., 2006. Modeling crack deterioration of flexible pavements. Transportation Research Record: Journal of the Transportation Research Board, 1974 (1), 18–25. doi:10.1177/0361198106197400103
  • Zang, K., et al., 2018. Assessing and mapping of road surface roughness based on GPS and accelerometer sensors on bicycle-mounted smartphones. Sensors, 18 (3), 914. doi:10.3390/s18030914
  • Ziari, H., et al., 2016. Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods. International Journal of Pavement Engineering, 17 (9), 776–788. doi:10.1080/10298436.2015.1019498

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.