72
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Comparison of mixed mode I/III fracture toughness data obtained from the ENDB specimens manufactured by gyratory cylinders with two diameters of 100 and 150 mm

, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Article: 2281996 | Received 16 Feb 2023, Accepted 03 Nov 2023, Published online: 27 Nov 2023

References

  • Ahmadi-Moghadam, B., and Taheri, F., 2015. Influence of graphene nanoplatelets on modes I, II and III interlaminar fracture toughness of fiber-reinforced polymer composites. Engineering Fracture Mechanics, 143, 97–107. doi:10.1016/j.engfracmech.2015.06.026
  • Aliha, M.R.M., et al., 2018. Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+III loading. Polymer Testing, 67, 75–83. doi:10.1016/j.polymertesting.2018.02.015
  • Aliha, M.R.M., and Ayatollahi, M.R., 2010. Geometry effects on fracture behaviour of polymethyl methacrylate. Materials Science and Engineering: A, 527, 526–530. doi:10.1016/j.msea.2009.08.055
  • Aliha, M.R.M., Bahmani, A., and Akhondi, S., 2015. Numerical analysis of a new mixed mode I/III fracture test specimen. Engineering Fracture Mechanics, 134, 95–110. doi:10.1016/j.engfracmech.2014.12.010
  • Aliha, M.R.M., Bahmani, A., and Akhondi, S., 2016. A novel test specimen for investigating the mixed mode I+III fracture toughness of hot mix asphalt composites – experimental and theoretical study. International Journal of Solids and Structures, 90, 167–177. doi:10.1016/j.ijsolstr.2016.03.018
  • Aliha, M.R.M., and Jafari Haghighat Pour, P., 2020a. Fracture resistance study for hot mix asphalt mixture under out of plane sliding mode. Engineering Fracture Mechanics, 238, 107230. doi:10.1016/j.engfracmech.2020.107230
  • Aliha, M.R.M., and Jafari Haghighat Pour, P., 2020b. Fracture resistance study for hot mix asphalt mixture under out of plane sliding mode. Engineering Fracture Mechanics, 238, 107230. doi:10.1016/j.engfracmech.2020.107230
  • Aliha, M.R.M., Karimi, H.R., and Abedi, M., 2022. The role of mix design and short glass fiber content on mode-I cracking characteristics of polymer concrete. Construction and Building Materials, 316, 125590.
  • Aliha, M.R.M., Karimi, H.R., and Ghoreishi, S.M.N., 2021. Design and validation of simple bend beam specimen for covering the full range of I+II fracture modes. European Journal of Mechanics-A/Solids, 91, 104425.
  • Aliha, M.R.M., and Sarbijan, M.J., 2016. Effects of loading, geometry and material properties on fracture parameters of a pavement containing top-down and bottom-up cracks. Engineering Fracture Mechanics, 166, 182–197. doi:10.1016/j.engfracmech.2016.08.028
  • Aliha, M.R.M., Sarbijan, M.J., and Bahmani, A., 2017. Fracture toughness determination of modified HMA mixtures with two novel disc shape configurations. Construction and Building Materials, 155, 789–799. doi:10.1016/j.conbuildmat.2017.08.093
  • Ameri, M., et al., 2011. Cracked asphalt pavement under traffic loading – a 3D finite element analysis. Engineering Fracture Mechanics, 78, 1817–1826. doi:10.1016/j.engfracmech.2010.12.013
  • Ayatollahi, M.R., and Saboori, B., 2014. Maximum tangential strain energy density criterion for general mixed mode I/II/III brittle fracture. International Journal of Damage Mechanics, 24, 263–278. doi:10.1177/1056789514530745
  • Ayatollahi, M.R., and Saboori, B., 2015. T-stress effects in mixed mode I/II/III brittle fracture. Engineering Fracture Mechanics, 144, 32–45. doi:10.1016/j.engfracmech.2015.06.070
  • Bahmani, A., et al., 2021. On the comparison of two mixed-mode I + III fracture test specimens. Engineering Fracture Mechanics, 241, 107434. doi:10.1016/j.engfracmech.2020.107434
  • Berto, F., et al., 2013. Fracture behaviour of notched round bars made of PMMA subjected to torsion at −60°C. Engineering Fracture Mechanics, 102, 271–287. doi:10.1016/j.engfracmech.2013.02.011
  • Bidadi, J., Akbardoost, J., and Aliha, M.R.M., 2020. Thickness effect on the mode III fracture resistance and fracture path of rock using ENDB specimens. Fatigue & Fracture of Engineering Materials & Structures, 43, 277–291. doi:10.1111/ffe.13121
  • Bidadi, J., Aliha, M.R.M., and Akbardoost, J., 2022. Development of maximum tangential strain (MTSN) criterion for prediction of mixed-mode I/III brittle fracture. International Journal of Solids and Structures, 256, 111979. doi:10.1016/j.ijsolstr.2022.111979
  • Brühwiler, E., and Wittmann, F.H., 1990. The wedge splitting test, a new method of performing stable fracture mechanics tests. Engineering Fracture Mechanics, 35, 117–125. doi:10.1016/0013-7944(90)90189-N
  • Chang, K.J., 1981. On the maximum strain criterion – a new approach to the angled crack problem. Engineering Fracture Mechanics, 14, 107–124. doi:10.1016/0013-7944(81)90021-7
  • Eghbali, M.R., et al., 2019. The effect of ENDB specimen geometry on mode I fracture toughness and fracture energy of HMA and SMA mixtures at low temperatures. Engineering Fracture Mechanics, 216, 106496. doi:10.1016/j.engfracmech.2019.106496
  • Feng, X., Kumar, A.M., and Hirth, J.P., 1993. Mixed mode I/III fracture toughness of 2034 aluminum alloys. Acta Metallurgica et Materialia, 41, 2755–2764. doi:10.1016/0956-7151(93)90144-H
  • Firat, M., 2012. Cyclic plasticity modeling and finite element analyzes of a circumferentially notched round bar under combined axial and torsion loadings. Materials & Design, 34, 842–852. doi:10.1016/j.matdes.2011.07.022
  • Fuan, S., et al., 2021. Influence of specimen geometry on mode I fracture toughness of asphalt concrete. Construction and Building Materials, 276, 122181. doi:10.1016/j.conbuildmat.2020.122181
  • Ghoroghi, S.S., et al., 2023. Comparative cracking resistance-cost study for the hot mix asphalt (HMA) mixtures made of natural and recycled asphaltic materials. Fatigue & Fracture of Engineering Materials & Structures, 64(11), 4199–4217.
  • Haghighatpour, P.J., and Aliha, M.R.M., 2022. Assessment of freezing and thawing cycle (FTC) effects on mixed mode I/III fracture toughness and work of fracture of HMA asphalt mixtures. Theoretical and Applied Fracture Mechanics, 118, 103261. doi:10.1016/j.tafmec.2022.103261
  • Haghighat Pour, P.J., Aliha, M.R.M., and Keymanesh, M.R., 2018. Evaluating mode I fracture resistance in asphalt mixtures using edge notched disc bend ENDB specimen with different geometrical and environmental conditions. Engineering Fracture Mechanics, 190, 245–258. doi:10.1016/j.engfracmech.2017.11.007
  • Hajiloo, H.R., et al., 2022. Crack resistance of fiber-reinforced asphalt mixtures: effect of test specimen and test condition. Fatigue & Fracture of Engineering Materials & Structures, 45(3), 921–937.
  • He, J., et al., 2021. Contribution of interface fracture mechanism on fracture propagation trajectory of heterogeneous asphalt composites. Applied Sciences, 11(7), 3013–3025.
  • Horner, A.L., and Davidson, B.D., 2015. Fracture surface evolution and apparent delamination toughness in split composite beam specimens subjected to mixed mode I–III loading. Composites Part A: Applied Science and Manufacturing, 79, 92–102. doi:10.1016/j.compositesa.2015.09.021
  • Hua, W., et al., 2021. An extended maximum tangential strain energy density criterion considering T-stress for combined mode I–III brittle fracture. Fatigue & Fracture of Engineering Materials & Structures, 44, 169–181. doi:10.1111/ffe.13349
  • Jafari Haghighatpour, P., and Aliha, M.R.M., 2022. Effect of marshal and gyratory compaction methods on cracking characteristics of hot mix asphalt concrete materials under all three basic modes of fracture. Theoretical and Applied Fracture Mechanics, 117, 103207. doi:10.1016/j.tafmec.2021.103207
  • Karamzadeh, N.S., Aliha, M.R.M., and Karimi, H.R., 2022. Investigation of the effect of components on tensile strength and mode-I fracture toughness of polymer concrete. Arabian Journal of Geosciences, 15, 1213. doi:10.1007/s12517-022-10466-y
  • Karimi, H.R., et al., 2022. A comprehensive study on ring shape specimens under compressive and tensile loadings for covering the full range of I+II fracture modes of gypsum material. International Journal of Rock Mechanics and Mining Sciences, 160, 105265. doi:10.1016/j.ijrmms.2022.105265
  • Karimi, H.R., et al., 2023a. Mode I and mode II fracture toughness and fracture energy of cement concrete containing different percentages of coarse and fine recycled tire rubber granules. Theoretical and Applied Fracture Mechanics, 123, 103722. doi:10.1016/j.tafmec.2022.103722
  • Karimi, H.R., et al., 2023b. Strength and cracking resistance of concrete containing different percentages and sizes of recycled tire rubber granules. Journal of Building Engineering, 106033. doi:10.1016/j.jobe.2023.106033
  • Karimi, H.R., et al., 2023c. An experimental study and theoretical evaluation on the effect of specimen geometry and loading configuration on recorded fracture toughness of brittle construction materials. Journal of Building Engineering, 75, 106759. doi:10.1016/j.jobe.2023.106759
  • Karimi, H.R., et al., 2023d. Repair efficiency evaluation for cracked asphalt mixture pavement in different ambient temperatures using bitumen and polymer concrete as repair materials. Construction and Building Materials, 369, 130556. doi:10.1016/j.conbuildmat.2023.130556
  • Maccagno, T.M., and Knott, J.F., 1989. The fracture behaviour of PMMA in mixed modes I and II. Engineering Fracture Mechanics, 34, 65–86. doi:10.1016/0013-7944(89)90243-9
  • Mansourian, A., Hashemi, S., and Aliha, M.R.M., 2018. Evaluation of pure and mixed modes (I/III) fracture toughness of Portland cement concrete mixtures containing reclaimed asphalt pavement. Construction and Building Materials, 178, 10–18. doi:10.1016/j.conbuildmat.2018.05.130
  • Mohammad Aliha, M.R., Ghesmati Kucheki, H., and Asadi, M.M., 2021. On the use of different diametral compression cracked disc shape specimens for introducing mode III deformation. Fatigue & Fracture of Engineering Materials & Structures, 44, 3135–3151. doi:10.1111/ffe.13570
  • Moradi, E., and Zeinedini, A., 2020. On the mixed mode I/II/III inter-laminar fracture toughness of cotton/epoxy laminated composites. Theoretical and Applied Fracture Mechanics, 105, 102400. doi:10.1016/j.tafmec.2019.102400
  • Motamedi, H., et al., 2020. Evaluation of temperature and loading rate effect on fracture toughness of fiber reinforced asphalt mixture using edge notched disc bend (ENDB) specimen. Construction and Building Materials, 234, 117365. doi:10.1016/j.conbuildmat.2019.117365
  • Najjar, S., et al., 2020. Low temperature fracture resistance of cement emulsified asphalt mortar under mixed mode I/III loading. Theoretical and Applied Fracture Mechanics, 110, 102800. doi:10.1016/j.tafmec.2020.102800
  • Pietras, D., Aliha, M.R.M., and Sadowski, T., 2021. Mode III fracture toughness testing and numerical modeling for aerated autoclaved concrete using notch cylinder specimen subjected to torsion. Materials Today: Proceedings, 45(5), 4326–4329.
  • Pirmohammad, S., and Ayatollahi, M.R., 2014. Fracture resistance of asphalt concrete under different loading modes and temperature conditions. Construction and Building Materials, 53, 235–242. doi:10.1016/j.conbuildmat.2013.11.096
  • Pirmohammad, S., and Bayat, A., 2016. Characterizing mixed mode I/III fracture toughness of asphalt concrete using asymmetric disc bend (ADB) specimen. Construction and Building Materials, 120, 571–580. doi:10.1016/j.conbuildmat.2016.05.137
  • Pirmohammad, S., and Bayat, A., 2017. Fracture resistance of HMA mixtures under mixed mode I/III loading at different subzero temperatures. International Journal of Solids and Structures, 120, 268–277. doi:10.1016/j.ijsolstr.2017.05.010
  • Prasad, K., Srinivas, M., and Kamat, S. V, 2014. Influence of mixed mode I/III loading on dynamic fracture toughness of mild steel at room and low temperatures. Materials Science and Engineering: A, 590, 54–59. doi:10.1016/j.msea.2013.09.099
  • Saed, S.A., et al., 2022. Full range I/II fracture behavior of asphalt mixtures containing RAP and rejuvenating agent using two different 3-point bend type configurations. Construction and Building Materials, 314, 125590. doi:10.1016/j.conbuildmat.2021.125590
  • Shahbazian, B., et al., 2022. Experimental and theoretical investigation of mixed-mode I/II and I/III fracture behavior of PUR foams using a novel strain-based criterion. International Journal of Solids and Structures, 258, 111996. doi:10.1016/j.ijsolstr.2022.111996
  • Sharma, R., et al., 2011. Mixed mode I/III fracture toughness in extruded magnesium alloys. Materials Science and Engineering: A, 528, 5875–5882. doi:10.1016/j.msea.2011.04.013
  • Sih, G.C., 1991. Mechanics of fracture initiation and propagation: surface and volume energy density applied as failure criterion, engineering applications of fracture mechanics. Springer Netherlands.
  • Toribio, J., Matos, J.C., and González, B., 2018. Notch effect on the stress intensity factor in tension-loaded circumferentially cracked bars. Engineering Fracture Mechanics, 202, 436–444. doi:10.1016/j.engfracmech.2018.08.021
  • Wang, Y., et al., 2020. A review on mixed mode fracture of metals. Engineering Fracture Mechanics, 235, 107126. doi:10.1016/j.engfracmech.2020.107126
  • Wittmann, F.H., Mihashi, H., and Nomura, N., 1990. Size effect on fracture energy of concrete. Engineering Fracture Mechanics, 35, 107–115. doi:10.1016/0013-7944(90)90188-M
  • Yang, D., Karimi, H.R., and Aliha, M.R., 2021. Comparison of testing method effects on cracking resistance of asphalt concrete mixtures. Applied Sciences, 11(11), 5094–5099.
  • Yishu, Z., 1987. A strain energy criterion for mixed mode crack propagation. Engineering Fracture Mechanics, 26, 533–539. doi:10.1016/0013-7944(87)90096-8
  • Zappalorto, M., Lazzarin, P., and Berto, F., 2009. Elastic notch stress intensity factors for sharply V-notched rounded bars under torsion. Engineering Fracture Mechanics, 76, 439–453. doi:10.1016/j.engfracmech.2008.11.008
  • Zeinedini, A., 2019. A novel fixture for mixed mode I/II/III fracture testing of brittle materials. Fatigue & Fracture of Engineering Materials & Structures, 42, 838–853. doi:10.1111/ffe.12955
  • Zeinedini, A., et al., 2020. On the mixed mode I/II/III translaminar fracture toughness of cotton/epoxy laminated composites. Theoretical and Applied Fracture Mechanics, 109, 102760. doi:10.1016/j.tafmec.2020.102760
  • Zhao, Y., 1987. Griffith’s criterion for mixed mode crack propagation. Engineering Fracture Mechanics, 26, 683–689. doi:10.1016/0013-7944(87)90133-0
  • Ziari, H., et al., 2019. Investigating the effects of loading, mechanical properties and layers geometry on fatigue life of asphalt pavements. Fatigue & Fracture of Engineering Materials & Structures, 42, 1563–1577. doi:10.1111/ffe.12928

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.