30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of aromatic oils on the structural and physicochemical properties of rubberised asphalt based on molecular simulations

, , , &
Article: 2358490 | Received 07 Mar 2024, Accepted 16 May 2024, Published online: 12 Jun 2024

References

  • Bian, G., et al., 2022. Effects of tetraethyl orthosilicate on rheological behaviors of crumb rubber modified asphalt. Construction and Building Materials, 325, 126807. doi:10.1016/j.conbuildmat.2022.126807
  • Cao, L., Su, Z., Liu, R., et al., 2022. Optimized formulation of asphalt compound containing bio-oil and shredded rubber. Journal of Cleaner Production, 378, 134591. doi:10.1016/j.jclepro.2022.134591
  • Chen, R., Zhu, H., Kong, L., et al., 2023. Stage-aging characteristics and stages division of crumb rubber modified asphalt binder. Construction and Building Materials, 367, 129712. doi:10.1016/j.conbuildmat.2022.129712
  • Duan, K., Wang, C., Liu, J., et al., 2022. Research progress and performance evaluation of crumb-rubber-modified asphalts and their mixtures. Construction and Building Materials, 361, 129687. doi:10.1016/j.conbuildmat.2022.129687
  • Faisal, K., Zakertabrizi, M., Hosseini, E., et al., 2021. Effects of amide-based modifiers on surface activation and devulcanization of rubber. Computational Materials Science, 188, 110175. doi:10.1016/j.commatsci.2020.110175
  • Feng, X., Liang, H., and Dai, Z., 2022. Rheological properties and microscopic mechanism of waste cooking oil activated waste crumb rubber modified asphalt. Journal of Road Engineering, 2 (4), 357–368. doi:10.1016/j.jreng.2022.09.001
  • Gao, Y., Xie, Y., Liao, M., et al., 2023. Study on the mechanism of the effect of graphene on the rheological properties of rubber-modified asphalt based on size effect. Construction and Building Materials, 364, 129815. doi:10.1016/j.conbuildmat.2022.129815
  • Gong, F., Cheng, X., Chen, Y., et al., 2022. 3D printed rubber modified asphalt as sustainable material in pavement maintenance. Construction and Building Materials, 354, 129160. doi:10.1016/j.conbuildmat.2022.129160
  • He, H., Gou, P., Li, R., et al., 2022. Optimum preparation and rheological properties of liquid rubber modified asphalt binder. Construction and Building Materials, 347, 128551. doi:10.1016/j.conbuildmat.2022.128551
  • Kong, P., Xu, G., Fu, L., et al., 2023. Chemical structure of rubber powder on the compatibility of rubber powder asphalt. Construction and Building Materials, 392, 131769. doi:10.1016/j.conbuildmat.2023.131769
  • Kumar, A., Choudhary, R., and Kumar, A., 2022. Composite asphalt binder modification with waste Non-tire automotive rubber and pyrolysis oil. Materials Today: Proceedings, 61, 158–166. doi:10.1016/j.matpr.2021.07.431
  • Li, D., and Greenfield, M., 2014. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel, 115, 347–356. doi:10.1016/j.fuel.2013.07.012
  • Li, J., Chen, Z., Xiao, F., et al., 2021. Surface activation of scrap tire crumb rubber to improve compatibility of rubberized asphalt. Resources, Conservation and Recycling, 169, 105518. doi:10.1016/j.resconrec.2021.105518
  • Li, J., Xiao, X., Chen, Z., et al., 2022. Internal de-crosslinking of scrap tire crumb rubber to improve compatibility of rubberized asphalt. Sustainable Materials and Technologies, 32, e00417.
  • Long, Z., et al., 2022. Nanomechanical-atomistic insights on interface interactions in asphalt mixtures with various chloride ion erosion statuses. Journal of Colloid and Interface Science, 628 (Part A), 891–909. doi:10.1016/j.jcis.2022.08.014
  • Lv, Y., Wu, S., Li, N., et al., 2023. Performance and VOCs emission inhibition of environmentally friendly rubber modified asphalt with UiO-66 MOFs. Journal of Cleaner Production, 385, 135633. doi:10.1016/j.jclepro.2022.135633
  • Lyu, L., Pei, J., Hu, D., et al., 2022. Bio-modified rubberized asphalt binder: a clean, sustainable approach to recycle rubber into construction. Journal of Cleaner Production, 345, 131151. doi:10.1016/j.jclepro.2022.131151
  • Ma, J., Hu, M., Sun, D., et al., 2021. Understanding the role of waste cooking oil residue during the preparation of rubber asphalt. Resources, Conservation & Recycling, 167, 105235. doi:10.1016/j.resconrec.2020.105235
  • Modupe, E., Atoyebi, D., Oluwatuyi, E., et al., 2018. Dataset of mechanical, Marshall and rheological properties of crumb rubber-Bio-oil modified hot mix asphalt for sustainable pavement works. Data in Brief, 21, 63–70. doi:10.1016/j.dib.2018.09.080
  • Nenjegowda, H., and Biligiri, P., 2023. Utilization of high contents of recycled tire crumb rubber in developing a modified-asphalt-rubber binder for road applications. Resources, Conservation and Recycling, 192, 106909. doi:10.1016/j.resconrec.2023.106909
  • Qiu, Y., Gao, Y., Zhang, X., et al., 2023. Conventional properties, rheological properties, and storage stability of crumb rubber modified asphalt with WCO and ABS. Construction and Building Materials, 392, 131987. doi:10.1016/j.conbuildmat.2023.131987
  • Tang, N., Zhang, Z., Dong, R., et al., 2022. Emission behavior of crumb rubber modified asphalt in the production process. Journal of Cleaner Production, 340, 130850. doi:10.1016/j.jclepro.2022.130850
  • Wu, W., Jiang, W., Xiao, J., et al., 2022. Analysis of thermal susceptibility and rheological properties of asphalt binder modified with microwave activated crumb rubber. Journal of Cleaner Production, 377, 134488. doi:10.1016/j.jclepro.2022.134488
  • Wu, Z., Huang, Y., Gui, L., et al., 2023. 3D porous graphene nanosheets as efficient additives for high-performance styrene–butadiene–styrene/crumb rubber blend-modified asphalt. Materials & Design, 232, 112157. doi:10.1016/j.matdes.2023.112157
  • Xie, J., Zhao, X., Lv, S., et al., 2023. Research on performance and mechanism of terminal blend/grafting activated crumb rubber composite modified asphalt. Construction and Building Materials, 394, 132225. doi:10.1016/j.conbuildmat.2023.132225
  • Xu, G., Kong, P., Yu, Y., et al., 2022. Rheological properties of rubber modified asphalt as function of waste tire rubber reclaiming degree. Journal of Cleaner Production, 332, 130113. doi:10.1016/j.jclepro.2021.130113
  • Xu, G., Yao, Y., Ma, T., et al., 2023. Experimental study and molecular simulation on regeneration feasibility of high-content waste tire crumb rubber modified asphalt. Construction and Building Materials, 369, 130570. doi:10.1016/j.conbuildmat.2023.130570
  • Yan, Y, Guo, R., Cheng, C., et al., 2022. Viscosity prediction model of natural rubber-modified asphalt at high temperatures. Polymer Testing, 113, 107666. doi:10.1016/j.polymertesting.2022.107666
  • Yan, Y., Guo, R., Liu, Z., et al., 2023a. Property improvement of thermosetting natural rubber asphalt binder by mineral oil. Journal of Materials Research and Technology, 24, 8807–8825. doi:10.1016/j.jmrt.2023.05.134
  • Yan, Y., Zhou, X., Jiang, R., et al., 2023b. Molecular interaction mechanism between aromatic oil and high-content waste-rubber-modified asphalt. Sustainability, 15 (19), 14079. doi:10.3390/su151914079
  • You, L., et al., 2020. Experimental and molecular dynamics simulation study on thermal, transport, and rheological properties of asphalt. Construction and Building Materials, 265, 120358. doi:10.1016/j.conbuildmat.2020.120358
  • Yu, X., Xie, Y., Yao, H., et al., 2023. Excellent low temperature performance for modified asphalt by finely dispersed sidewall tire rubber. Construction and Building Materials, 392, 131939. doi:10.1016/j.conbuildmat.2023.131939
  • Zhao, Y., Chen, M., Wu, S., et al., 2022. Effects of waterborne polyurethane on storage stability, rheological properties, and VOCs emission of crumb rubber modified asphalt. Journal of Cleaner Production, 340, 130682. doi:10.1016/j.jclepro.2022.130682
  • Zhou, S., Wang, J., Li, S., et al., 2023. Investigating the effects of antioxidants on the aging characteristics of crumb rubber modified asphalt. Materials Today Communications, 35, 106040. doi:10.1016/j.mtcomm.2023.106040
  • Zhou, T., Faisal, K., Cao, L., et al., 2020. Comparing effects of physisorption and chemisorption of bio-oil onto rubber particles in asphalt. Journal of Cleaner Production, 273, 123112. doi:10.1016/j.jclepro.2020.123112
  • Zhou, X., 2023. Physicochemical properties of high-content rubber modified bio-asphalt using molecular simulation. Petroleum Science and Technology, 1–21. doi:10.1080/10916466.2023.2210601
  • Zhu, Y., Xu, G., Ma, T., et al., 2022. Performances of rubber asphalt with middle/high content of waste tire crumb rubber. Construction and Building Materials, 335, 127488. doi:10.1016/j.conbuildmat.2022.127488

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.