38
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of rutting performance of asphalt mixture and pavements based on mesostructured finite element simulation

, &
Article: 2364295 | Received 25 Nov 2023, Accepted 30 May 2024, Published online: 04 Jul 2024

References

  • Aashto Designation: M 320-05, 2008. Standard specification for performance graded asphalt binder. American Association of State Highway and Transportation Officials.
  • Aashto Designation: T 350-14, 2014. Standard method of test for multiple stress creep recover (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). American Association of State Highways and Transportation Officials.
  • Belytschko, T., and Black, T., 1999. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45 (5), doi:10.1002/(SICI)1097-0207(19990620)45:5.
  • Chakroborty, P., Das, A., and Ghosh, P., 2010. Determining reliability of an asphalt mix design: case of marshall method. Journal of Transportation Engineering, 136 (1), 31–37. doi:10.1061/(ASCE)0733-947X(2010)136:1(31).
  • Chen, J., Zhang, D., and Huang, X.M., 2015. Application of discrete element particle flow software (PFC) in road engineering. Beijing: China Communications Press Co., Ltd.
  • Collins, I.F., 2015. Development of a pavement rutting model using shakedown theory. Development, 16 (1), 55–65. doi:10.1515/ijpeat-2015-0003.
  • Deng, Y., et al., 2022. Stress–strain dependent rutting prediction models for multi-layer structures of asphalt mixtures. International Journal of Pavement Engineering, 23 (8), 2728–2745. doi:10.1080/10298436.2020.1869974.
  • Ding, B., et al., 2018. Evaluation of fracture resistance of asphalt mixtures using the single-edge notched beams. Advances in Materials Science and Engineering, 2018), doi:10.1155/2018/8026798.
  • Ebrahimi, M.G., 2015. Investigation of viscoelastic behaviour and permanent deformation modelling for New Zealand hot mix asphalts. Thesis (PhD). University of Canterbury, Upper Riccarton, Christchurch, New Zealand.
  • Ghuzlan, K.A., et al., 2023. Viscoelastic-based finite element rutting predictive models for asphalt pavements. Emergent Materials, 6 (1), 337–354. doi:10.1007/s42247-022-00435-2.
  • Goh, S.W., et al., 2011. Preliminary dynamic modulus criteria of HMA for field rutting of asphalt pavements: Michigan’s experience. Journal of Transportation Engineering, 137 (1), 37–45. doi:10.1061/(ASCE)TE.1943-5436.0000191.
  • Guo, R., and Nian, T., 2020. Analysis of factors that influence anti-rutting performance of asphalt pavement. Construction and Building Materials, 254, 119237. doi:10.1016/j.conbuildmat.2020.119237.
  • Hajj, R., et al., 2019. Considerations for using the 4 mm plate geometry in the dynamic shear rheometer for Low temperature evaluation of asphalt binders. Transportation Research Record: Journal of the Transportation Research Board, 2673 (11), 649–659. doi:10.1177/0361198119855332.
  • Huang, Y., Wang, L., and Xiong, H., 2017. Evaluation of pavement response and performance under different scales of APT facilities. Road Materials and Pavement Design, 18 (sup3), 159–169. doi:10.1080/14680629.2017.1329871.
  • Ji, J., et al., 2021. Rutting prediction model of asphalt mixture based on the triaxial repeated load test. Advances in Civil Engineering, 2021, 1–9. doi:10.1155/2021/5238680.
  • Jie, J., et al., 2020. Rutting resistance of direct coal liquefaction residue (DCLR) modified asphalt mixture under variable loads over a wide temperature range. Construction and Building Materials, 257, 119489. doi:10.1016/j.conbuildmat.2020.119489.
  • JTG E20-2011, 2011. Standard test method of bitumen and bituminous mixture for highway engineering in China, Beijing, People’s Republic of China (in Chinese)
  • Lee, E.J., et al., 2022. Performance evaluation of asphalt mixtures with 100% EAF and BOF steel slag aggregates using laboratory tests and mechanistic analyses. KSCE Journal of Civil Engineering, 26 (11), 4542–4551. doi:10.1007/s12205-022-1985-1.
  • Leiva-Villacorta, F., Vargas-Nordcbeck, A., and Aguiar-Moya, J.P., 2017. Permanent deformation and deflection relationship from pavement condition assessment. International Journal of Pavement Research and Technology, 10 (4), 352–359. doi:10.1016/j.ijprt.2017.03.005.
  • Leonardi, G., 2015. Finite element analysis for airfield asphalt pavements rutting prediction. Bulletin of the Polish Academy of Sciences Technical Sciences, 63.), doi:10.1515/bpasts-2015-0045.
  • Li, Q., et al., 2014. Evaluating the rutting resistance of asphalt mixtures using an advanced repeated load permanent deformation test under field conditions. Construction and Building Materials, 61, 241–251. doi:10.1016/j.conbuildmat.2014.02.052.
  • Liu, Z., Gu, X., and Ren, H., 2023. Rutting prediction of asphalt pavement with semi-rigid base: numerical modeling on laboratory to accelerated pavement testing. Construction and Building Materials, 375, 130903. doi:10.1016/j.conbuildmat.2023.130903.
  • Mo, L., et al., 2012. Experimental investigation of bituminous plug expansion joint materials containing high content of crumb rubber powder and granules. Materials & Design, 37, 137–143. doi:10.1016/j.matdes.2012.01.003.
  • Prakash, G., and Suman, S.K., 2023. Rutting characteristics evaluation and prediction model development for warm mix asphalt. International Journal of Pavement Engineering, 24 (1), 2165656. doi:10.1080/10298436.2023.2165656.
  • Shi, J., and Cong, L., 2023. Testing and evaluating the high-temperature rutting development of steel deck asphalt pavement using full-scale accelerated pavement testing. Journal of Testing and Evaluation, 51 (2), 1094–1104. doi:10.1520/JTE20220134.
  • Singh, A.K., and Sahoo, J.P., 2021. Rutting prediction models for flexible pavement structures: a review of historical and recent developments. Journal of Traffic and Transportation Engineering (English Edition), 8 (3), 315–338. doi:10.1016/j.jtte.2021.04.003.
  • Wang, Y., et al., 2017. Finite element analysis for rutting prediction of asphalt concrete pavement under moving wheel load. International Journal of Simulation Modelling, 16 (2), 229–240. doi:10.2507/IJSIMM16(2)4.374.
  • Wang, H., Wang, J., and Chen, J., 2014. Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure. Engineering Fracture Mechanics, 132, 104–119. doi:10.1016/j.engfracmech.2014.10.029.
  • Zhang, J., et al., 2013. Comparison of flow number, dynamic modulus, and repeated load tests for evaluation of HMA permanent deformation. Construction and Building Materials, 44, 391–398. doi:10.1016/j.conbuildmat.2013.03.013.
  • Zhou, F., Scullion, T., and Sun, L., 2004. Verification and modeling of three-stage permanent deformation behavior of asphalt mixes. Journal of Transportation Engineering, 130 (4), 486–494. doi:10.1061/(ASCE)0733-947X(2004)130:4(486).
  • Zhu, H., and Sun, L., 2013. Mechanistic rutting prediction using a two-stage viscoelastic-viscoplastic damage constitutive model of asphalt mixtures. Journal of Engineering Mechanics, 139 (11), 1577–1591. doi:10.1061/(ASCE)EM.1943-7889.0000598.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.