1
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fractional viscoelastic constitutive modelling of real-time strain response for asphalt pavement composites subjected to simulating wheel loadings

, , ORCID Icon &
Article: 2380526 | Received 02 Dec 2023, Accepted 09 Jul 2024, Published online: 30 Jul 2024

References

  • Alotta, G., et al., 2018. On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Composites Part B: Engineering, 137, 102–110. doi:10.1016/j.compositesb.2017.10.014.
  • Ameri, M., Malakouti, M., and Malekzadeh, P., 2014. Quasi-static analysis of multilayered domains with viscoelastic layer using incremental-layerwise finite element method. Mechanics of Time-Dependent Materials, 18 (1), 275–291. doi:10.1007/s11043-013-9227-z.
  • Cao, W. and Kim, Y. R., 2016. A viscoplastic model for the confined permanent deformation of asphalt concrete in compression. Mechanics of Materials, 92, 235–247. doi:10.1016/j.mechmat.2015.10.001.
  • Celauro, C., et al., 2012. Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures. Construction and Building Materials, 36, 458–466. doi:10.1016/j.conbuildmat.2012.04.028.
  • Chabot, A., et al., 2011. Viscoroute 2.0 A: a tool for the simulation of moving load effects on asphalt pavement. Road Materials and Pavement Design, 11 (2), 227–250. doi:10.1080/14680629.2010.9690274.
  • Darabi, M. K., et al., 2011. A thermo-viscoelastic–viscoplastic–viscodamage constitutive model for asphaltic materials. International Journal of Solids and Structures, 48(1), 191-207. doi:10.1016/j.ijsolstr.2010.09.019
  • Gao, L.-s., Dan, H.-c., and Li, L. 2019. Response analysis of asphalt pavement under dynamic loadings: loading equivalence. Mathematical Problems in Engineering, 2019, 1–15. doi:10.1155/2019/7020298
  • Golalipour, A., 2011. Modification of multiple stress creep and recovery test procedure and usage in specification PhD. Madison: University of Wisconsin.
  • Gu, L. H., et al., 2021. Numerical simulation of viscoelastic behavior of asphalt mixture using fractional constitutive model. Journal of Engineering Mechanics, 147 (5), 12. doi:10.1061/(asce)em.1943-7889.0001927.
  • Guo, X.-x., et al., 2013. Analysis of impact of transverse slope on hydroplaning risk level. Procedia - Social and Behavioral Sciences, 96, 2310–2319. doi:10.1016/j.sbspro.2013.08.260.
  • Hajikarimi, P., et al., 2018a. Introducing a stress-dependent fractional nonlinear viscoelastic model for modified asphalt binders. Construction and Building Materials, 183, 102–113. doi:10.1016/j.conbuildmat.2018.06.166.
  • Hajikarimi, P., et al., 2018b. Generalized fractional viscoelastic modeling of low temperature characteristics of asphalt binders modified with polyphosphoric acid and distillate aromatic extracts oil. Journal of Materials in Civil Engineering, 30 (7), 04018147. doi:10.1061/(asce)mt.1943-5533.0002353.
  • Havriliak, S. and Negami, S., 1966. A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 14 (1), 99–117. doi:10.1002/polc.5070140111.
  • Hu, A., et al., 2022. A review on empirical methods of pavement performance modeling. Construction and Building Materials, 342, 127968. doi:10.1016/j.conbuildmat.2022.127968.
  • Huet, C., 1965. Etude par une méthode d’impédance du comportement viscoélastique des matériaux hydrocarbonés. Thèse de doctoratd’ingénieur. Faculté des Sciences de l’université de Paris.
  • Jiang, W., et al., 2022. Experimental study of the performance of porous ultra-thin asphalt overlay. International Journal of Pavement Engineering, 23 (6), 2049–2061. doi:10.1080/10298436.2020.1837826.
  • Kim, D., 2015. Modulus and permanent deformation characterization of asphalt mixtures and pavements. PhD, North Carolina State University.
  • Koeller, R. C., 1984. Applications of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 51 (2), 299–307. doi:10.1115/1.3167616.
  • Lagos-Varas, M., et al., 2019. Study of the mechanical behavior of asphalt mixtures using fractional rheology to model their viscoelasticity. Construction and Building Materials, 200, 124–134. doi:10.1016/j.conbuildmat.2018.12.073.
  • Lagos-Varas, M., et al., 2020. Study of the permanent deformation of binders and asphalt mixtures using rheological models of fractional viscoelasticity. Construction and Building Materials, 260, 120438. doi:10.1016/j.conbuildmat.2020.120438.
  • Lagos-Varas, M., et al., 2022. Viscoelasticity modelling of asphalt mastics under permanent deformation through the use of fractional calculus. Construction and Building Materials, 329, 127102. doi:10.1016/j.conbuildmat.2022.127102.
  • Li, Q., et al., 2022. Review on constitutive models of road materials. Journal of Road Engineering, 2 (1), 70–83. doi:10.1016/j.jreng.2022.02.001.
  • Liang, S., Luo, R., and Luo, W., 2021. Fractional differential constitutive model for linear viscoelasticity of asphalt and asphalt mastic. Construction and Building Materials, 306, 124886. doi:10.1016/j.conbuildmat.2021.124886.
  • Liu, H., et al., 2021a. Use of the multiple stress creep recovery (MSCR) test to characterize the rutting potential of asphalt binders: A literature review. Construction and Building Materials, 269, 121320. doi:10.1016/j.conbuildmat.2020.121320.
  • Liu, X., et al., 2021b. Using burgers constitutive model in both time and frequency domains to describe the aging behaviour of pavement bitumen. Journal of Physics: Conference Series, 2021 (1), 012036. doi:10.1088/1742-6596/2021/1/012036.
  • Nilsson, R., 2001. Viscoelastic pavement analysis using VEROAD. Dissertation/Thesis. Kungliga Tekniska Hogskolan (Sweden).
  • Oeser, M., et al., 2008. Studies on creep and recovery of rheological bodies based upon conventional and fractional formulations and their application on asphalt mixturem. International Journal of Pavement Engineering, 9 (5), 373–386. doi:10.1080/10298430802068923.
  • Oeser, M. and Freitag, S., 2016. Fractional derivatives and recurrent neural networks in rheological modelling – part I: theory. International Journal of Pavement Engineering, 17 (2), 87–102. doi:10.1080/10298436.2014.925549.
  • Olard, F. and Di Benedetto, H., 2003. General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Materials and Pavement Design, 4(2), 185–224. doi:10.1080/14680629.2003.9689946.
  • Reyes, M., et al., 2009. Modeling of repeated creep and recovery experiments in asphalt binders. Transportation Research Record: Journal of the Transportation Research Board, 2126 (1), 63–72. doi:10.3141/2126-08.
  • Rossikhin, Y. A. and Shitikova, M. V., 2010. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Applied Mechanics Reviews, 63 (1), 010801. doi:10.1115/1.4000563.
  • Saboo, N., 2021. Use of limited experimental data for the prediction of creep and recovery of asphalt binders. Journal of Materials in Civil Engineering, 33 (7), doi:10.1061/(asce)mt.1943-5533.0003783.
  • Saboo, N. and Kumar, P., 2015. A study on creep and recovery behavior of asphalt binders. Construction and Building Materials, 96, 632–640. doi:10.1016/j.conbuildmat.2015.08.078.
  • Saboo, N. and Mudgal, A., 2018. Modelling creep and recovery response of asphalt binders using generalized burgers model. Petroleum Science and Technology, 36 (20), 1627–1634. doi:10.1080/10916466.2018.1496109.
  • Sayegh, G., 1965. Variations des modules de quelques bitumes purs et enrobés bitumineux. Paris: Université. de Paris.
  • Shi, K., et al., 2024. Enhancing aged SBS-modified bitumen performance with unaged bitumen additives. Construction and Building Materials, 412, 134768. doi:10.1016/j.conbuildmat.2023.134768.
  • Song, R. M., et al., 2021. Polyphosphoric acid and plasticizer modified asphalt: rheological properties and modification mechanism. Construction and Building Materials, 309, 125158. doi:10.1016/j.conbuildmat.2021.125158.
  • Vajipeyajula, B., et al., 2020a. Analysis of reclaimed asphalt blended binders using linear and nonlinear viscoelasticity frameworks. Materials and Structures, 53 (5), 122. doi:10.1617/s11527-020-01554-0.
  • Vajipeyajula, B., et al., 2020b. Assessing permanent deformation of reclaimed asphalt blended binders using non-linear viscoelasticity theory. In: Advances in materials and pavement performance prediction II: contributions to the 2nd international conference on advances in materials and pavement performance prediction (AM3P 2020). 27–29 May, 2020. San Antonio, TX, USA, 372.
  • Wang, H. and Al-Qadi, I. L. 2013. Importance of nonlinear anisotropic modeling of granular base for predicting maximum viscoelastic pavement responses under moving vehicular loading. Journal of Engineering Mechanics, 139 (1), 29–38. doi:10.1061/(ASCE)EM.1943-7889.0000465.
  • Woldekidan, M. F., Huurman, M., and Pronk, A. C., 2012. A modified HS model: numerical applications in modeling the response of bituminous materials. Finite Elements in Analysis and Design, 53, 37–47. doi:10.1016/j.finel.2012.01.003.
  • Wu, F., et al., 2020. Viscoelastic-plastic damage creep model for salt rock based on fractional derivative theory. Mechanics of Materials, 150, 103600. doi:10.1016/j.mechmat.2020.103600.
  • Xu, Y. A., Shan, L. Y., and Tian, S., 2019. Fractional derivative viscoelastic response model for asphalt binders. Journal of Materials in Civil Engineering, 31 (6), 04019089. doi:10.1061/(asce)mt.1943-5533.0002716.
  • Yang, E., et al., 2021. Research on the recurrent neural network-based fatigue damage model of asphalt binder and the finite element analysis development. Construction and Building Materials, 267, 121761. doi:10.1016/j.conbuildmat.2020.121761.
  • Yin, H., Li, Y., and Wang, N. Z., 2012. Research on fractional derivative viscoelastic constitutive relation of asphalt mixture. Advanced Materials Research, 446–449, 2560–2566. doi:10.4028/www.scientific.net/AMR.446-449.2560.
  • You, Q., et al., 2020. Interpreting the creep behavior of asphalt mortar at high temperature through experimental and numerical methods. Construction and Building Materials, 258, 120317. doi:10.1016/j.conbuildmat.2020.120317.
  • Yuan, D., et al., 2023. Technology method and functional characteristics of road thermoelectric generator system based on seebeck effect. Applied Energy, 331, 120459. doi:10.1016/j.apenergy.2022.12045910.1016/j.apenergy.2022.120459.
  • Zahra, W. K., Hikal, M. M., and Bahnasy, T. A., 2017. Solutions of fractional order electrical circuits via Laplace transform and nonstandard finite difference method. Journal of the Egyptian Mathematical Society, 25 (2), 252–261. doi:10.1016/j.joems.2017.01.007.
  • Zhang, Q., et al., 2021. Creep damage model and damage evolution of asphalt mixtures. Journal of Traffic and Transportation Engineering, 21 (5), 104–113.
  • Zhang, Y., et al., 2021. A nonlinear fractional viscoelastic-plastic creep model of asphalt mixture. Polymers (Basel), 13 (8), 1278. doi:10.3390/polym13081278.
  • Zhang, J., Pei, J., and Zhang, Z., 2012. Development and validation of viscoelastic-damage model for three-phase permanent deformation of dense asphalt mixture. Journal of Materials in Civil Engineering, 24 (7), 842–850. doi:10.1061/(ASCE)MT.1943-5533.0000467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.