Publication Cover
Assistive Technology
The Official Journal of RESNA
Volume 26, 2014 - Issue 2
174
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Electrode Shift Effects on Wavelet Features Embedded in a Myoelectric Pattern Recognition System

, PhD & , PhD

References

  • Al-Assaf, Y. (2006). Surface myoelectric signal analysis: Dynamic approaches for change detection and classification. IEEE Transactions on Biomedical Engineering, 53, 2248–2256. doi:10.1109/TBME.2006.883628
  • Andrews, A., Morin, E., & McLean, L. (2009). Optimal electrode configurations for finger movement classification using EMG. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009 ( pp. 2987–2990). doi:10.1109/IEMBS.2009.5332520
  • Baumgartner, R. (1992). Upper extremity amputation and prosthetics. Medizinisch-Orthopädische Technik, 1, 5–51.
  • Biddiss, E., & Chau, T. (2007). Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthetics and Orthotics International, 31, 236–257.
  • Bishop, C. M. (2006). Continuous latent variables. In Pattern Recognition and Machine Learning. Secaucus, NJ: Springer-Verlag.
  • Boostani, R., & Moradi, M. H. (2003). Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiological Measurement, 24(2), 309. doi:10.1088/0967-3334/24/2/307
  • Castellini, C., & Van Der Smagt, P. (2009). Surface EMG in advanced hand prosthetics. Biological Cybernetics, 100(1), 35–47.
  • Chu, J. U., Moon, I., & Mun, M. S. (2006a). A supervised feature projection for real-time multifunction myoelectric hand control. In Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology ( pp. 2417–2420).
  • Chu, J. U., Moon, I., & Mun, M. S. (2006b). A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. IEEE Transactions on Biomedical Engineering, 53, 2232–2239.
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
  • De Luca, C. J., Donald Gilmore, L., Kuznetsov, M., & Roy, S. H. (2010). Filtering the surface EMG signal: Movement artifact and baseline noise contamination. Journal of Biomechanics, 43,1573–1579.
  • Englehart, K., & Hudgins, B. (2003). A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 50, 848–854.
  • Englehart, K., Hudgin, B., & Parker, P. A. (2001). A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 48, 302–311. doi:10.1109/10.914793
  • Englehart, K., Hudgins, B., Parker, P. A., & Stevenson, M. (1999). Classification of the myoelectric signal using time-frequency based representations. Medical Engineering and Physics, 21, 431–438.
  • Guler, N. F., & Kocer, S. (2005). Classification of EMG signals using PCA and FFT. Journal of Medical Systems, 29, 241–250.
  • Hargrove, L., Englehart, K., & Hudgins, B. (2006). The effect of electrode displacements on pattern recognition based myoelectric control. In 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) ( pp. 2203–2206).
  • Hargrove, L., Englehart, K., & Hudgins, B. (2008). A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control. Biomedical Signal Processing and Control, 3, 175–180.
  • Hargrove, L. J., Li, G., Englehart, K. B., & Hudgins, B. S. (2009). Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control. IEEE Transactions on Biomedical Engineering, 56, 1407–1414.
  • Hu, X., Wang, Z., & Ren, X. (2005). Classification of surface EMG signal using relative wavelet packet energy. Computer methods and programs in biomedicine, 79, 189–195. doi:10.1016/j.cmpb.2005.04.001
  • Hudgins, B., Parker, P., & Scott, R. N. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 40, 82–94.
  • Martelloni, C., Carpaneto, J., & Micera, S. (2009). Characterization of EMG patterns from proximal arm muscles during object- and orientation-specific grasps. IEEE Transactions on Biomedical Engineering, 56, 2529–2536.
  • Oskoei, M. A., & Hu, H. (2007). Myoelectric control systems-A survey. Biomedical Signal Processing and Control, 2, 275–294.
  • Park, S. H., & Lee, S. P. (1998). EMG pattern recognition based on artificial intelligence techniques. IEEE Transactions on Rehabilitation Engineering, 6, 400–405.
  • Parker, P., Englehart, K., & Hudgins, B. (2004). Control of Powered Upper Limb Prostheses. In R. Merletti & P. Parker ( Eds.), Electromyography: Physiology, Engineering, and Non-invasive Applications ( pp. 453–475). New York, NY: Wiley-IEEE.
  • Parker, P., Englehart, K., & Hudgins, B. (2006). Myoelectric signal processing for control of powered limb prostheses. Journal of Electromyography and Kinesiology, 16, 541–548.
  • Pasluosta, C. F., & Chiu, A. W. L. (2012). Evaluation of a neural network-based control strategy for a cost-effective externally-powered prosthesis. Assistive Technology, 24, 196–208. doi:10.1080/10400435.2012.659796
  • Pasluosta, C. F., Tims, H., & Chiu, A. W. L. (2009). Towards a low-cost robotic hand for upper-limb prosthetic applications. In H. Asada (Ed.). Proceedings of the 14th IASTED International Conference on Robotics and Applications 2009 ( pp. 234–241). Cambridge, MA: ACTA.
  • Platt, J., Cristianini, N., & Shawe-Taylor, J. (2000). Large margin DAGs for multiclass classification. In M. I. Jordan, Y. LeCun, and S. A. Solla (Eds.), Advances in Neural Information Processing Systems (Vol. 12, pp. 547–553). Cambridge, MA: MIT Press.
  • Pylatiuk, C., Schulz, S., & Döderlein, L. (2007). Results of an internet survey of myoelectric prosthetic hand users. Prosthetics and Orthotics International, 31, 362–370.
  • Scheme, E., & Englehart, K. (2011). Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. The Journal of Rehabilitation Research and Development, 48, 643–660. doi:10.1682/JRRD.2010.09.0177
  • Tkach, D., Huang, H., & Kuiken, T. A. (2010). Study of stability of time-domain features for electromyographic pattern recognition. Journal of NeuroEngineering and Rehabilitation, 7(1), 21. doi:10.1186/1743-0003-7-21
  • Wang, G., Wang, Z., Chen, W., & Zhuang, J. (2006). Classification of surface EMG signals using optimal wavelet packet method based on Davies-Bouldin criterion. Medical and Biological Engineering and Computing, 44, 865–872.
  • Wang, G., Yan, Z., Hu, X., Xie, H., & Wang, Z. (2006). Classification of surface EMG signals using harmonic wavelet packet transform. Physiological Measurement, 27(12), 1255–1267.
  • Young, A. J., Hargrove, L. J., & Kuiken, T. A. (2011). The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift. IEEE Transactions on Biomedical Engineering, 58, 2537–2544.
  • Zardoshti-Kermani, M., Wheeler, B. C., Badie, K., & Hashemi, R. M. (1995). EMG feature evaluation for movement control of upper extremity prostheses. IEEE Transactions on Rehabilitation Engineering, 3, 324–333.
  • Zecca, M., Micera, S., Carrozza, M. C., & Dario, P. (2002). Control of multifunctional prosthetic hands by processing the electromyographic signal. Critical Reviews in Biomedical Engineering, 30, 459–485.
  • Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the prevalence of limb loss in the United States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89, 422–429.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.