Publication Cover
Assistive Technology
The Official Journal of RESNA
Volume 34, 2022 - Issue 5
718
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effect of a passive hip exoskeleton on walking distance in neurological patients

, PhD, , BSc, , BSc, , BSc, , PhD & , PhD
Pages 527-532 | Accepted 18 Jan 2021, Published online: 05 Mar 2021

References

  • Afzal, T., Tseng, S. C., Lincoln, J. A., Kern, M., Francisco, G. E., & Chang, S. H. (2020). Exoskeleton-assisted gait training in persons with multiple sclerosis: A single-group pilot study. Archives of Physical Medicine and Rehabilitation, 101(4), 599-606, ISSN 0003-9993. https://doi.org/10.1016/j.apmr.2019.10.192
  • Asbeck, A. T., Rossi, S. M. M., De Galiana, I., Ding, Y., & Walsh, C. J. (2014). Stronger, smarter, softer: Next-generation wearable robots. IEEE Robotics & Automation Magazine, 21(4), 22–33. https://doi.org/10.1109/MRA.2014.2360283
  • Awad, L. N., Bae, J., O’Donnell, K., De Rossi, S. M. M., Hendron, K., Sloot, L. H., Kudzia, P., Allen, S., Holt, K. G., Ellis, T. D., & Walsh, C. J. (2017). A soft robotic exosuit improves walking in patients after stroke. Science Translational Medicine, 9(400), 400. https://doi.org/10.1126/scitranslmed.aai9084
  • Bohannon, R. W., & Glenney, S. S. (2014). Minimal clinically important difference for change in comfortable gait speed of adults with pathology: A systematic review. Journal of Evaluation in Clinical Practice, 20(4), 295–300. https://doi.org/10.1111/jep.12158
  • Borg, G. (1990). Psychophysical scaling with applications in physical work and the perception of exertion. Scandinavian Journal of Work, Environment & Health, 16(1), 55–8. https://doi.org/10.5271/sjweh.1815
  • Bowden, M. G., Woodbury, M. L., & Duncan, P. W. (2013). Promoting neuroplasticity and recovery after stroke: Future directions for rehabilitation clinical trials. Current Opinion in Neurology, 26(1), 37–42. https://doi.org/10.1097/WCO.0b013e32835c5ba0
  • Broderick, P., Horgan, F., Blake, C., Ehrensberger, M., Simpson, D., & Monaghan, M. (2019). Mirror therapy and treadmill training for patients with chronic stroke: A pilot randomized controlled trial. Topics in Stroke Rehabilitation, 26(2), 163–172. https://doi.org/10.1080/10749357.2018.1556504
  • Chen, B., Ma, H., Qin, L. Y., Gao, F., Chan, K. M., Law, S. W., Qin, L., & Liao, W. H. (2016, April 1). Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation, 5, 26–37. https://doi.org/10.1016/j.jot.2015.09.007
  • Collins, S. H., Bruce Wiggin, M., & Sawicki, G. S. (2015). Reducing the energy cost of human walking using an unpowered exoskeleton. Nature, 522(7555), 212–215. https://doi.org/10.1038/nature14288
  • Esquenazi, A., Talaty, M., & Jayaraman, A. (2017, January 1). Powered exoskeletons for walking assistance in persons with central nervous system injuries: A narrative review. PM and R, 9(1), 46–62. Elsevier Inc. https://doi.org/10.1016/j.pmrj.2016.07.534
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
  • Federici, S., Meloni, F., Bracalenti, M., De Filippis, M. L., Scherer, M. J., & Federici, S. (2015, October 22). The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation, 37(3), 321–340. IOS Press. https://doi.org/10.3233/NRE-151265
  • Gorgey, A. S. (2018). Robotic exoskeletons: The current pros and cons. World Journal of Orthopaedics, 9(9), 112–119. https://doi.org/10.5312/wjo.v9.i9.112
  • Heydari, M., & Boutcher, S. H. (2013). Rating of perceived exertion after 12 weeks of high-intensity, intermittent sprinting. Perceptual and Motor Skills, 116(1), 340–351. https://doi.org/10.2466/06.15.29.PMS.116.1.340-351
  • Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009, January). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3–12. https://doi.org/10.1249/MSS.0b013e31818cb278
  • Kozlowski, A. J., Fabian, M., Lad, D., & Delgado, A. D. (2017). Feasibility and safety of a powered exoskeleton for assisted walking for persons with multiple sclerosis: A single-group preliminary study. Archives of Physical Medicine and Rehabilitation, 98(7), 1300–1307. https://doi.org/10.1016/j.apmr.2017.02.010
  • Louie, D. R., & Eng, J. J. (2016, June 8). Powered robotic exoskeletons in post-stroke rehabilitation of gait: A scoping review. Journal of Neuroengineering and Rehabilitation. 13 (1), 1-10. BioMed Central Ltd. https://doi.org/10.1186/s12984-016-0162-5
  • Mahlknecht, P., Kiechl, S., Bloem, B. R., Willeit, J., Scherfler, C., Gasperi, A., Seppi, K., Seppi, K., & Rungger, G. (2013). Prevalence and burden of gait disorders in elderly men and women aged 60-97 years: A population-based study. PLoS ONE, 8(7), 1–7. https://doi.org/10.1371/journal.pone.0069627
  • McGibbon, C. A., Sexton, A., Jayaraman, A., Deems-Dluhy, S., Gryfe, P., Novak, A., Dutta, T., Fabara, E., Adans-Dester, C., & Bonato, P. (2018). Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: An open-label, randomized, cross-over trial. Journal of Neuroengineering and Rehabilitation, 15(1), 117. https://doi.org/10.1186/s12984-018-0468-6
  • Mehrholz, J., Kugler, J., Storch, A., Pohl, M., Elsner, B., & Hirsch, K. (2015). Treadmill training for patients with Parkinson’s disease. Cochrane Database Systematic Review, 22(9), CD007830. https://doi.org/10.1002/14651858.CD007830.pub3.
  • Molteni, F., Gasperini, G., Gaffuri, M., Colombo, M., Giovanzana, C., Lorenzon, C., Farina, N., Cannaviello, G., Scarano, S., Proserpio, D., Liberali, D., & Guanziroli, E. (2017). Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: Preliminary results. European Journal of Physical and Rehabilitation Medicine, 53(5), 676–684. https://doi.org/10.23736/S1973-9087.17.04591-9
  • Panizzolo, F. A., Bolgiani, C., Di Liddo, L., Annese, E., & Marcolin, G. (2019). Reducing the energy cost of walking in older adults using a passive hip flexion device. Journal of Neuroengineering and Rehabilitation, 16(1), 117. https://doi.org/10.1186/s12984-019-0599-4
  • Panizzolo, F. A., Freisinger, G. M., Karavas, N., Eckert-Erdheim, A. M., Siviy, C., Long, A., Zifchock, R. A., LaFiandra, M. E., & Walsh, C. J. (2019). Metabolic cost adaptations during training with a soft exosuit assisting the hip joint. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-45914-5
  • Robertson, R. J. (2004). Perceived exertion for practitioners: Rating effort with the OMNI picture system. Human Kinetics.
  • Sale, P., Pandis, M. F., De Domenica, L. P., Sova, I., Cimolin, V., Ancillao, A., Albertini, G., Galli, M., Stocchi, F., & Franceschini, M. (2013). Robot-assisted walking training for individuals with Parkinson ’ s disease : A pilot randomized controlled trial. BMC Neurology, 13(1), 1. https://doi.org/10.1186/1471-2377-13-50
  • Sangelaji, B., Kordi, M., Banihashemi, F., Massood Nabavi, S., Khodadadeh, S., & Dastoorpoor, M. (2016). A combined exercise model for improving muscle strength, balance, walking distance, and motor agility in multiple sclerosis patients: A randomized clinical trial. Iranian Journal of Neurology, 15(3), 111–120. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027145/
  • Sawicki, G. S., Beck, O. N., Kang, I., & Young, A. J. (2020). The exoskeleton expansion: Improving walking and running economy. Journal of Neuroengineering and Rehabilitation, 17(1), 25. https://doi.org/10.1186/s12984-020-00663-9
  • Steffen, T. M. (2002). Age and gender related test performance in community-dwelling elderly people: 6MW Test, BBS, TUG, and Gait Speed. Physical Therapy, 82(2), 128–137. https://doi.org/10.1093/ptj/82.2.128
  • Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6(1), 35–39. https://doi.org/10.1177/875647939000600106
  • Wall, A., Wall, A., Borg, J., Borg, J., Palmcrantz, S., & Palmcrantz, S. (2015). Clinical application of the hybrid assistive limb (Hal) for gait training – A systematic review. Frontiers in Systems Neuroscience, 9(MAR), 48. https://doi.org/10.3389/fnsys.2015.00048
  • Winter, D. A. (2009). Biomechanics and motor control of human movement. Wiley-Interscience Publication.
  • Young, A. J., & Ferris, D. P. (2017). State of the art and future directions for lower limb robotic exoskeletons. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2), 171–182. https://doi.org/10.1109/TNSRE.2016.2521160

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.