Publication Cover
Assistive Technology
The Official Journal of RESNA
Volume 35, 2023 - Issue 3
2,549
Views
3
CrossRef citations to date
0
Altmetric
Articles

Stability and Falls Evaluations in AMPutees (SAFE-AMP 1): Microprocessor knee technology reduces odds of incurring an injurious fall for individuals with diabetic/dysvascular amputation

, PhD, , PhD, , MEd & , PhD
Pages 205-210 | Accepted 19 Nov 2021, Published online: 13 Jan 2022

References

  • Alexander, B. H., Rivara, F. P., & Wolf, M. E. (1992). The cost and frequency of hospitalization for fall-related injuries in older adults. American Journal of Public Health, 82(7), 1020–1023. https://doi.org/10.2105/ajph.82.7.1020
  • Ayoung-Chee, P., McIntyre, L., Ebel, B. E., Mack, C. D., McCormick, W., & Maier, R. V. (2014). Long-term outcomes of ground-level falls in the elderly. The Journal of Trauma and Acute Care Surgery, 76(2), 498–503; discussion 503. https://doi.org/10.1097/TA.0000000000000102
  • Burnfield, J. M., Eberly, V. J., Gronely, J. K., Perry, J., Yule, W. J., & Mulroy, S. J. (2012). Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees. Prosthetics and Orthotics International, 36(1), 95–104. https://doi.org/10.1177/0309364611431611
  • Burns, E., & Kakara, R. (2018). Deaths from falls among persons aged >65 years - United States, 2007–2016. MMWR Morb Mortal Wkly Rep 67, 509–514. doi:10.15585/mmwr.mm6718a1
  • Centers for Disease Control and Prevention. Falls among older adults: An overview. Retrieved September 21, 2020, from http://www.cdc.gov/HomeandRecreationalSafety/Falls/adultfalls.html
  • Chen, C., Hanson, M., Chaturvedi, R., Mattke, S., Hillestad, R., & Liu, H. (2018). Economic benefits of microprocessor controlled prosthetic knees: A modeling study. Journal of Neuroengineering and Rehabilitation, 15(1), 62. https://doi.org/10.1186/s12984-018-0405-8
  • Florence, C. S., Bergen, G., Atherly, A., Burns, E., Stevens, J., & Drake, C. (2018). Medical costs of fatal and nonfatal falls in older adults. Journal of the American Geriatrics Society, 66(4), 693–698. https://doi.org/10.1111/jgs.15304
  • Gardner, A. W., & Montgomery, P. S. (2001). Impaired balance and higher prevalence of falls in subjects with intermittent claudication. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 56(7), M454–8. https://doi.org/10.1093/gerona/56.7.m454
  • Groll, D., To, T., Bombardier, C., & Wright, J. (2005). The development of a comorbidity index with physical function as the outcome. Journal of Clinical Epidemiology, 58(6), 595–602. https://doi.org/10.1016/j.jclinepi.2004.10.018
  • Hafner, B. J., & Smith, D. G. (2009). Differences in function and safety between medicare functional classification level-2 and -3 transfemoral amputees and influence of prosthetic knee joint control. Journal of Rehabilitation Research and Development, 46(3), 417–433. https://doi.org/10.1682/JRRD.2008.01.0007
  • Hafner, B. J., Willingham, L. L., Buell, N. C., Allyn, K. J., & Smith, D. G. (2007). Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Archives of Physical Medicine and Rehabilitation, 88(2), 207–217. https://doi.org/10.1016/j.apmr.2006.10.030
  • Hartholt, K. A., Van Beeck, E. F., Polinder, S., Van der Velde, N., Van Lieshout, E. M., Panneman, M. J., Van der Cammen, T. J., & Patka, P. (2011). Societal consequences of falls in the older population: Injuries, healthcare costs, and long-term reduced quality of life. Journal of Trauma, 71(3), 748–753 doi:10.1097/TA.0b013e3181f6f5e5.
  • Hunter, S. W., Batchelor, F., Hill, K. D., Hill, A. M., Mackintosh, S., & Payne, M. (2017). Risk factors for falls in people with a lower limb amputation: A systematic review. PM & R: The Journal of Injury, Function, and Rehabilitation, 9(2), 170–180.e1. https://doi.org/10.1016/j.pmrj.2016.07.531
  • Jager, T. E., Weiss, H. B., Coben, J. H., & Pepe, P. E. (2000). Traumatic brain injuries evaluated in U.S. emergency departments, 1992–1994. Academic Emergency Medicine: Official Journal of the Society for Academic Emergency Medicine, 7(2), 134–140. https://doi.org/10.1111/j.1553-2712.2000.tb00515.x
  • Kahle, J. T., Highsmith, M. J., & Hubbard, S. L. (2008). Comparison of nonmicroprocessor knee mechanism versus C-leg on prosthesis evaluation questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. Journal of Rehabilitation Research and Development, 45(1), 1–14. https://doi.org/10.1682/JRRD.2007.04.0054
  • Kannenberg, A., Zacharias, B., & Probsting, E. (2014). Benefits of microprocessor-controlled prosthetic knees to limited community ambulators: Systematic review. Journal of Rehabilitation Research and Development, 51(10), 1469–1496. https://doi.org/10.1682/JRRD.2014.05.0118
  • Kaufman, K. R., Bernhardt, K. A., & Symms, K. (2018). Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees. Clinical Biomechanics (Bristol, Avon), 58, 116–122. https://doi.org/10.1016/j.clinbiomech.2018.07.012
  • Kaufman, K. R., Frittoli, S., & Frigo, C. A. (2012). Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Clinical Biomechanics (Bristol, Avon), 27(5), 460–465. https://doi.org/10.1016/j.clinbiomech.2011.11.011
  • Kaufman, K. R., Levine, J. A., Brey, R. H., Iverson, B. K., McCrady, S. K., Padgett, D. J., & Joyner, M. J. (2007). Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees. Gait & Posture, 26(4), 489–493. https://doi.org/10.1016/j.gaitpost.2007.07.011
  • Kaufman, K. R., Levine, J. A., Brey, R. H., McCrady, S. K., Padgett, D. J., & Joyner, M. J. (2008). Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Archives of Physical Medicine and Rehabilitation, 89(7), 1380–1385. https://doi.org/10.1016/j.apmr.2007.11.053
  • LCD: Lower limb prostheses. (2019). Centers for Medicare & Medicaid Serviceshttps://med.noridianmedicare.com/documents/2230703/7218263/Lower+Limb+Prostheses+LCD+and+PA/d3244c51-74d3-4214-a789-7481bc2e03d5
  • Liu, H., Chen, C., Hanson, M., Chaturvedi, R., Mattke, S., & Hillestad, R. (2017). Economic value of advanced transfemoral prosthetics. Rand Corporation.
  • Miller, W. C., Speechley, M., & Deathe, B. (2001). The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Archives of Physical Medicine and Rehabilitation, 82(8), 1031–1037. https://doi.org/10.1053/apmr.2001.24295
  • Polfer, E. M., Hoyt, B. W., Bevevino, A. J., Forsberg, J. A., & Potter, B. K. (2019). Knee disarticulations versus transfemoral amputations: Functional outcomes. Journal of Orthopaedic Trauma, 33(6), 308–311. https://doi.org/10.1097/BOT.0000000000001440
  • Rand, T. J., Wurdeman, S. R., Johanning, J. M., Pipinos, I. I., & Myers, S. A. (2015). Increased minimum toe clearance variability in patients with peripheral arterial disease. Medical Engineering & Physics, 37(12), 1141–1145. https://doi.org/10.1016/j.medengphy.2015.09.009
  • Roubik, D., Cook, A. D., Ward, J. G., Chapple, K. M., Teperman, S., Stone, M. E., Jr, Gross, B., & Moore, F. O., 3rd. (2017). Then we all fall down: Fall mortality by trauma center level. The Journal of Surgical Research, 217, 36–44.e2. https://doi.org/10.1016/j.jss.2016.12.039
  • Stalenhoef, P. A., Diederiks, J. P., Knottnerus, J. A., Kester, A. D., & Crebolder, H. F. (2002). A risk model for the prediction of recurrent falls in community-dwelling elderly: A prospective cohort study. Journal of Clinical Epidemiology, 55(11), 1088–1094. https://doi.org/10.1016/S0895-4356(02)00502-4
  • Sterling, D. A., O’Connor, J. A., & Bonadies, J. (2001). Geriatric falls: Injury severity is high and disproportionate to mechanism. The Journal of Trauma, 50(1), 116–119. https://doi.org/10.1097/00005373-200101000-00021
  • Stevens, P. M., & Wurdeman, S. R. (2019). Prosthetic knee selection for individuals with unilateral transfemoral amputation: A clinical practice guideline. Journal of Prosthetics and Orthotics, 31(1), 2–8. https://doi.org/10.1097/JPO.0000000000000214
  • Strange, D., & Takarangi, M. K. (2015). Memory distortion for traumatic events: The role of mental imagery. Frontiers in Psychiatry, 6(27)., . https://doi.org/10.3389/fpsyt.2015.00027
  • Theeven, P. J., Hemmen, B., Brink, P. R., Smeets, R. J., & Seelen, H. A. (2013). Measures and procedures utilized to determine the added value of microprocessor-controlled prosthetic knee joints: A systematic review. BMC Musculoskeletal Disorders, 14(1), 333–2474-14-333. https://doi.org/10.1186/1471-2474-14-333
  • Tinetti, M. E., & Kumar, C. (2010). The patient who falls: “it’s always a trade-off.” Journal of the American Medical Association, 303(3), 258–266. https://doi.org/10.1001/jama.2009.2024
  • Tinetti, M. E., Speechley, M., & Ginter, S. (1988). Risk factors for falls among elderly persons living in the community. New England Journal of Medicine, 319(26), 1701–1707. https://doi.org/10.1056/NEJM198812293192604
  • Tinetti, M. E., & Williams, C. S. (1998). The effect of falls and fall injuries on functioning in community-dwelling older persons. Journal of Gerontology: Medical Sciences, 53A(2), M112–M119 doi:10.1093/gerona/53a.2.m112.
  • Tzamaloukas, A., Leger, A., Hill, J., & Murata, G. (2000). Body mass index in patients with amputations on peritoneal dialysis: Error of uncorrected estimates and proposed correction. Advances in Peritoneal Dialysis. Conference on Peritoneal Dialysis, 16, 138–142.
  • Tzamaloukas, A., Patron, A., & Malhotra, D. (1994). Body mass index in amputees. Journal of Parenteral and Enteral Nutrition, 18(4), 355–358. https://doi.org/10.1177/014860719401800414
  • Verma, S. K., Willetts, J. L., Corns, H. L., Marucci-Wellman, H. R., Lombardi, D. A., Courtney, T. K., & Haddad, J. M. (2016). Falls and fall-related injuries among community-dwelling adults in the United States. PLOS One, 11(3), e0150939. https://doi.org/10.1371/journal.pone.0150939
  • Wong, C. K., Rheinstein, J., & Stern, M. A. (2015). Benefits for adults with transfemoral amputations and peripheral artery disease using microprocessor compared with nonmicroprocessor prosthetic knees. American Journal of Physical Medicine & Rehabilitation, 94(10), 804–810. https://doi.org/10.1097/PHM.0000000000000265
  • Wurdeman, S. R., Stevens, P. M., & Campbell, J. H. (2018a). Mobility analysis of AmpuTees (MAAT 1): Quality of life and satisfaction are strongly related to mobility for patients with a lower limb prosthesis. Prosthetics and Orthotics International, 42(5), 498–503. https://doi.org/10.1177/0309364617736089
  • Wurdeman, S. R., Stevens, P. M., & Campbell, J. H. (2018b). Mobility analysis of amputees (MAAT 3): Matching individuals based on comorbid health reveals improved function for above-knee prosthesis users with microprocessor knee technology. Assistive Technology: The Official Journal of RESNA, 32(5) , 236–242. https://doi.org/10.1080/10400435.2018.1530701
  • Yang, Y., Hu, X., Zhang, Q., & Zou, R. (2016). Diabetes mellitus and risk of falls in older adults: A systematic review and meta-analysis. Age and Ageing, 45(6), 761–767. https://doi.org/10.1093/ageing/afw140