143
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Gradient Nanostructure on Plasma Sulfonitrocarburizing of 42MnCr52 Steel

, , &
Pages 133-143 | Received 03 Jun 2019, Accepted 01 Sep 2019, Published online: 14 Oct 2019

References

  • Podgornik, B., Majdic, F., Leskovsek, V., Vizintin, J. (2012), “Improving tribological properties of tool steels through combination of deep-cryogenic treatment and plasma nitriding,” Wear, 288, pp 88–93.
  • Nouveau, C., Steyer, P., Rao, K. R. M., Lagadrillere, D. (2011), “Plasma nitriding of 90CrMoV8 tool steel for the enhancement of hardness and corrosion resistance,” Surface & Coatings Technology, 205, pp 4514–4520.
  • Wang, J., Xiong, J., Peng, Q., Fan, H. Y., Wang, Y., Li, G. J., Shen, B. L. (2009), “Effects of DC plasma nitriding parameters on microstructure and properties of 304L stainless steel,” Mater Character, 60, pp 197–203.
  • Kulka, M., Panfifil, D., Michalski, J., Wach, P. (2016), “The effects of laser surface modification on the microstructure and properties of gas-nitrided 42CrMo4 steel,” Optics & Laser Technology, 82, pp 203–219.
  • Ma, G. Z., Xu, B. S., Wang, H. D., Li G. L., Zhang, S. (2013), “The low-temperature ion sulfurizing technology and its applications,” Physics Procedia, 50, pp 131–138.
  • Wang, H. D., Xu, B. S., Liu, J. J., Zhuang, D. M. (2005), “Investigation on friction and wear behaviors of FeS films on L6 steel surface,” Applied Surface Science, 252, pp 1084–1091.
  • Wang, H. D., Zhuang, D. M., Wang, K. L., Liu, J. J. (2002), “Anti-scuffing properties of ion sulfide layers on three hard steels,” Wear, 253, pp 1207–1213.
  • Wang, H. D., Ma, G. Z., Xu, B. S., Si, H. J., Yang, D. X. (2011), “Microstructure and vacuum tribological properties of 1Cr18Ni9Ti steel with combined surface treatments,” Surface & Coatings Technology, 205, pp 3546–3552.
  • Zhang, N., Zhuang, D. M., Liu, J. J. (2009), “Tribological behaviors of steel surfaces treated with ion sulphurization duplex processes,” Surface & Coatings Technology, 203, pp 3173–3177.
  • Cai, Z. H., Zhang, P., Zeng, Q. Q. (2011), “Novel surface treat technology for improving wear-resistant properties of cylinder liner,” Advanced Materials Research, 168-170, pp 2387–2390.
  • Shen, D. J., Wang, Y. L., Nash, P., Xing, G. Z. (2007), “A novel method of surface modification for steel by plasma electrolysis carbonitriding,” Materials Science and Engineering A, 458, pp 240–243.
  • Wang, L. J., Xing, Y. Z., Wang, H. B., Hao, J. M. (2010), “Effect of nitriding-sulfurizing composite treatment on the tribological behavior of titanium alloys,” Rare Metals, 29(6), pp. 604–607.
  • Hu, C. H., Ma, S. N., Qiao, Y. L., Zou, J. P., Gao, Y. D., Sun, X. F. (2008), “Study on Friction Reduction and Anti-scuffing Technology of Duplex Ion Nitrocarburizing and Sulphurizing,” Key Engineering Materials, 373-374, pp 476–479.
  • Tong, W. P., Han, Z., Wang, L. M., Lu, J., Lu, K. (2008), “Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment,” Surface & Coatings Technology, 202, pp 4957–4963.
  • Tong, W. P., Tao, N. R., Wang, Z. B., Lu, J., Lu, K. (2003) “Nitriding iron at lower temperatures,” Science, 299(31), pp 686–688.
  • Suzuki, A., Mishin, Y. (2003), “Atomistic modeling of point defects and diffusion in copper grain boundaries,” Interface Science, 11(1), pp 131–148.
  • Vetterick, G. A., Gruber, J., Suri, P. K., Baldwin, J. K., Kirk, M. A., Baldo, P., Wang, Y. Q., Misra, A., Tucker, G. J., Taheri, M. L. (2017), “Achieving radiation tolerance through non-equilibrium grain boundary structures,” Scientific Reports, 7: 12275.
  • Lu, K., Huo, C. F., He, Y. R., Yin, J. Q., Liu, J. J., Peng, Q., Guo, W. P., Yang, Y., Li, Y. W., Wen, X. D. (2018), “Grain boundary plays a key role in carbon diffusion in carbon irons revealed by a ReaxFF study,” The Journal of Physical Chemistry C, 122, pp 23191–23199.
  • Wu, X. L., Tao, N. R., Wei, Q. M., Jiang, P., Lu, J., Lu, K. (2007), “Microstructural evolution and formation of nanocrystalline intermetallic compound during surface mechanical attrition treatment of cobalt,” Acta Materialia, 55(17), pp 5768–5779.
  • Kolobov, Y. R., Grabovetskaya, G. P., Ivanov, M. B., Zhilyaev, A. P., Valiev, R. Z. (2001), “Grain boundary diffusion characteristics of nanostructured nickel,” Scripta Materialia, 44 (6), pp 873–878.
  • Zhang, H., Qin, H. F., Ren, Z. C., Zhao, J. G., Hou, X. N., Doll, G. L., Dong, Y. L., Ye, C. (2017), “Low-temperature nitriding of nanocrystalline Inconel 718 alloy,” Surface & Coatings Technology, 330, PP 10–16.
  • Benafia, S., Retraint, D., Brou, S. Y., Panicaud, B., Poussard, J. L. G. (2018), “Influence of surface mechanical attrition treatment on the oxidation behaviour of 316L stainless steel,” Corrosion Science, 136, pp 188–200.
  • Lu, K. (2014), “Making strong nanomaterials ductile with gradients,” Science, 345, pp 1455–1456.
  • Lu, K., Lu, J. (2004), “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment,” Materials Science and Engineering: A, 375-377, pp 38–45.
  • Kovaci, H., Bozkurt, Y. B., Yetim, A. F., Aslan, M., Celik, A. (2019), “The effect of surface plastic deformation produced by shot peening on corrosion behavior of a low-alloy steel,” Suface & Coatings Technology, 360, pp 78–86.
  • Zheng, H. Z., Guo, S. H., Luo, Q. H., Shu, X. Y., Li, G. F. (2019), “Effect of shot peening on microstructure, nanocrystallization and microhardness of Ti-10V-2Fe-3Al alloy surface,” Journal Of Iron And Steel Resarch International, 26(1), pp 52–58.
  • Ye, Y. D., Li, X. P., Sun, Z. Y., Wang, H. B., Tang, G. Y. (2018), “Enhanced surface mechanical properties and microstructure evolution of commercial pure titanium under electropulsing-assisted ultrasonic surface rolling process,” Acta Metallurgica Sinica-English Letters, 31(12), pp 1272–1280.
  • Liu, Y., Wang, L. J., Wang, D. P. (2011), “Finite element modeling of ultrasonic surface rolling process,” Journal of Materials Processing Technology, 211, pp 2106–2113.
  • Wang, T., Wang, D. P., Liu, G., Gong, B. M., Song, N. X. (2008), “Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing,” Applied Surface Science, 255, pp 1824–1829.
  • Xu, X. C., Liu, D. X., Zhang, X. H., Liu, C. S., Liu, D., Zhang, W. C. (2019), “Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy,” International Journal of Fatigue, 125, pp 237–248.
  • Zhao, W. D., Liu, D. X., Xiaohua Zhang, X.H., Zhou, Y., Zhang, R. X., Zhang, H., Ye, C. (2019), “Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process,” International Journal of Fatigue, 121, pp 30–38.
  • Liu, C. S., Liu, D. X., Zhang, X. H., Ao, N., Xu, X. C., Liu, D., Yang, J. (2019), “Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process,” International Journal of Fatigue, 125, pp 249–260.
  • Liu, C. S., Liu, D. X., Zhang, X. H., Liu, D., Ma, A. M., Ao, N., Xu, X. C. (2019), “Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process,” Journal of Materials Science & Technology, 35, pp 1555–1562.
  • Xia, T.T., Zeng, L. F., Zhang, X. H., Liu, J., Zhang, W. L., Liang, T. X., Yang, B. (2019), “Enhanced corrosion resistance of a Cu-10Ni alloy in a 3.5 wt% NaCl solution by means of ultrasonic surface rolling treatment,” Surface & Coatings Technology, 363, pp 390–399.
  • Ye, H., Sun, X., Liu, Y., Rao, X. X., Gu, Q. (2019), “Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy,” Surface & Coatings Technology, 372, pp 288–298.
  • Tong, W. P., Liu, C. Z., Wang, W., Tao, N. R., Wang, Z.B., Zuo, L., He, J. C. (2007), “Gaseous nitriding of iron with a nanostructured surface layer,” Scripta Materialia, 57, pp 533–536.
  • Liu, Y., Jin, B., Shao, S., Li, D. J., Zeng, X. Q., Xu, C. S. (2014), “Dry sliding wear behavior of Mg-Zn-Gd alloy before and after cryogenic treatment,” Tribology Transactions, 57, pp 275–282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.