265
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Effect of LaCl3 Surface-Modified Carbon Nanotubes on Tribological Properties and Thermal Stability of Carbon Nanotube–Reinforced Epoxy Resin Composites

ORCID Icon, ORCID Icon & ORCID Icon
Pages 144-153 | Received 20 Jun 2019, Accepted 29 Aug 2019, Published online: 22 Oct 2019

References

  • Wetzel, B., Haupert, F., and Qiu Zhang, M. (2003), “Epoxy Nanocomposites with High Mechanical and Tribological Performance,” Composites Science and Technology, 63(14), pp 2055–2067.
  • Carter, J. T., Emmerson, G. T., Faro, C. L., McGrail, P. T., and Moore, D. R. (2003), “The Development of a Low Temperature Cure Modified Epoxy Resin System for Aerospace Composites,” Composites Part A, 34(1), pp 83–91.
  • Gay, D. (2014), Composite Materials: Design and Applications, CRC Press: Boca Raton.
  • Wetzel, B., Rosso, P., Haupert, F., and Friedrich, K. (2006), “Epoxy Nanocomposites—Fracture and Toughening Mechanisms,” Engineering Fracture Mechanics, 73(16), pp 2375–2398.
  • Byrne, M. T. and Gun’Ko, Y. K. (2010), “Recent Advances in Research on Carbon Nanotube–Polymer Composites,” Advanced Materials, 22(15), pp 1672–1688.
  • Burris, D. L., Boesl, B., Bourne, G. R., and Sawyer, W. G. (2007), “Polymeric Nanocomposites for Tribological Applications,” Macromolecular Materials and Engineering, 292(4), pp 387–402.
  • Chang, L., Zhang, Z., Breidt, C., and Friedrich, K. (2005), “Tribological Properties of Epoxy Nanocomposites: I. Enhancement of the Wear Resistance by Nano-TiO2 Particles,” Wear, 258(1–4), pp 141–148.
  • Domun, N., Hadavinia, H., Zhang, T., Sainsbury, T., Liaghat, G. H., and Vahid, S. (2015), “Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials—A Review of the Current Status,” Nanoscale, 7(23), pp 10294–10329.
  • Li, Y., Huang, X., Zeng, L., Li, R., Tian, H., Fu, X., Wang, Y., and Zhong W. H. (2019), “A Review of the Electrical and Mechanical Properties of Carbon Nanofiller–Reinforced Polymer Composites,” Journal of Materials Science, 54(2), pp 1036–1076.
  • Dass, K., Chauhan, S. R., and Gaur, B. (2014), “Study on Mechanical and Dry Sliding Wear Characteristics of Meta-Cresol Novalac Epoxy Composites Filled with Silicon Carbide, Aluminum Oxide, and Zinc Oxide Particulates,” Tribology Transactions, 57(2), pp 157–172.
  • Gupta, S., Hammann, T., Johnson, R., and Riyad, M. F. (2015), “Tribological Behavior of Novel Ti3SiC2 (Natural Nanolaminates)–Reinforced Epoxy Composites during Dry Sliding,” Tribology Transactions, 58(3), pp 560–566.
  • Wu, J., Ye, C., Liu, T., An, Q., Song, Y., Lee, K., Hung, W.-S., and Gao, C.-J. (2017), “Synergistic Effects of CNT and GO on Enhancing Mechanical Properties and Separation Performance of Polyelectrolyte Complex Membranes,” Materials & Design, 119, pp 38–46.
  • Makowiec, M. E. and Blanchet, T. A. (2017), “Improved Wear Resistance of Nanotube- and Other Carbon-Filled PTFE Composites,” Wear, 374–375, pp 77–85.
  • Mohanty, A. and Srivastava, V. K. (2015), “Tribological Behavior of Particles and Fiber-Reinforced Hybrid Nanocomposites,” Tribology Transactions, 58(6), pp 1142–1150.
  • Xie, S., Li, W., Pan, Z., Chang, B., and Sun, L. (2000), “Mechanical and Physical Properties on Carbon Nanotube,” Journal of Physics & Chemistry of Solids, 61(7), pp 1153–1158.
  • Iijima, S. (1991), “Helical Microtubules of Graphitic Carbon,” Nature, 354(6348), pp 56–58.
  • Volder, M. F. L. D., Tawfick, S. H., Baughman, R. H., and A John, H. (2013), “Carbon Nanotubes: Present and Future Commercial Applications,” Science, 339(6119), pp 535–539.
  • Dong, B., Yang, Z., Huang, Y., and Li, H. L. (2005), “Study on Tribological Properties of Multi-Walled Carbon Nanotubes/Epoxy Resin Nanocomposites,” Tribology Letters, 20(3–4), pp 251–254.
  • Le, H. R., Howson, A., Ramanauskas, M., and Williams, J. A. (2012), “Tribological Characterisation of Air-Sprayed Epoxy–CNT Nanocomposite Coatings,” Tribology Letters, 45(2), pp 301–308.
  • Upadhyay, R. K. and Kumar, A. (2018), “A Novel Approach to Minimize Dry Sliding Friction and Wear Behavior of Epoxy by Infusing Fullerene C70 and Multiwalled Carbon Nanotubes,” Tribology International, 120, pp 455–464.
  • Campo, M., Jiménez-Suárez, A., and Ureña, A. (2015), “Effect of Type, Percentage and Dispersion Method of Multi-Walled Carbon Nanotubes on Tribological Properties of Epoxy Composites,” Wear, 324–325, pp 100–108.
  • Zhao, Y., Cabrera, E. D., Zhang, D., Sun, J., Kuang, T., Yang, W., Lertola, M. J., Benatar, A., Castro, J. M., and Lee, L. J. (2018), “Ultrasonic Processing of MWCNT Nanopaper Reinforced Polymeric Nanocomposites,” Polymer, 156, pp 85–94.
  • Thostenson, E. T., Ren, Z., and Chou, T. W. (2001), “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review,” Composites Science & Technology, 61(13), pp 1899–1912.
  • Chen, H., Jacobs, O., Wu, W., Rüdiger, G., and Schädel, B. (2007), “Effect of Dispersion Method on Tribological Properties of Carbon Nanotube Reinforced Epoxy Resin Composites,” Polymer Testing, 26(3), pp 351–360.
  • Moshiul Alam, A. K. M., Beg, M. D. H., Yunus, R. M., Bijarimi, M., Mina, M. F., Maria, K. H., and Mieno, T. (2018), “Modification of Structure and Properties of Well-Dispersed Dendrimer Coated Multi-Walled Carbon Nanotube Reinforced Polyester Nanocomposites,” Polymer Testing, 68, pp 116–125.
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., and Ruoff, R. S. (2010), “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Advanced Materials, 22(35), pp 3906–3924.
  • Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., and Ruoff, R. S. (2006), “Graphene-Based Composite Materials,” Nature, 442(7100), pp 282–286.
  • Qin, S., Cui, M., Dai, Z., Qiu, S., Zhao, H., Wang, L., and Zhang, A. (2018), “Noncovalent Functionalized Graphene-Filled Polyimides with Improved Thermal, Mechanical, and Wear Resistance Properties,” Tribology Letters, 66(2), pp 69–78.
  • Nie, P., Min, C., Chen, X., Shen, C., Tu, W., and Song, H. (2016), “Effect of MWCNTs-COOH Reinforcement on Tribological Behaviors of PI/MWCNTs-COOH Nanocomposites under Seawater Lubrication,” Tribology Transactions, 59(1), pp 89–98.
  • Wang, E., Dong, Y., Islam, M. Z., Yu, L., Liu, F., Chen, S., Qi, X., Zhu, Y., Fu, Y., Xu, Z., and Hu, N. (2019), “Effect of Graphene Oxide–Carbon Nanotube Hybrid Filler on the Mechanical Property and Thermal Response Speed of Shape Memory Epoxy Composites,” Composites Science and Technology, 169, pp 209–216.
  • Min, C., Liu, D., Shen, C., Zhang, Q., Song, H., Li, S., Shen, X., Zhu, M., and Zhang, K. (2018), “Unique Synergistic Effects of Graphene Oxide and Carbon Nanotube Hybrids on the Tribological Properties of Polyimide Nanocomposites,” Tribology International, 117, pp 217–224.
  • Nazem Salimi, M., Alizadeh Sahraei, A., Baniassadi, M., Abrinia, K., and Ehsani, M. (2015), “Synergistic Effect of Carbon Nanotubes and Copper Particles in an Epoxy-Based Nanocomposite Using Electroless Copper Deposited Carbon Nanotubes: Part I—Mechanical Properties,” Journal of Composite Materials, 50(14), pp 1909–1920.
  • Hsu, Y., Wu, C., Wu, S., and Su, C. (2017), “Synthesis and Properties of Carbon Nanotube–Grafted Silica Nanoarchitecture–Reinforced Poly(lactic acid),” Materials, 10(7), pp 829–843.
  • Zhang, L., Zhang, G., Chang, L., Wetzel, B., Jim, B., and Wang, Q. (2016), “Distinct Tribological Mechanisms of Silica Nanoparticles in Epoxy Composites Reinforced with Carbon Nanotubes, Carbon Fibers and Glass Fibers,” Tribology International, 104, pp 225–236.
  • Balasubramanian, K. and Burghard, M. (2005), “Chemically Functionalized Carbon Nanotubes,” Small, 1(2), pp 180–192.
  • Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., and Bhowmick, A. K. (2011), “A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites,” Progress in Polymer Science, 36(5), pp 638–670.
  • Qi, Z., Tan, Y., Wang, H., Xu, T., Wang, L., and Xiao, C. (2017), “Effects of Noncovalently Functionalized Multiwalled Carbon Nanotube with Hyperbranched Polyesters on Mechanical Properties of Epoxy Composites,” Polymer Testing, 64, pp 38–47.
  • Gong, K., Wu, X., Zhao, G., and Wang, X. (2017), “Tribological Properties of Polymeric Aryl Phosphates Grafted onto Multi-Walled Carbon Nanotubes as High-Performances Lubricant Additive,” Tribology International, 116, pp 172–179.
  • Yaghoubi, A. and Ramazani, A. (2018), “Synthesis of Amino-Functionalized Carbon Nanotubes and Their Applications,” Current Organic Chemistry, 22(15), pp 1505–1522.
  • Kang, N. G., Lu, X., Hiremath, N., Hong, K., Evora, M., Ranson, V., Naskar, A. K., Bhat, G. S., Kang, N.-G., and Mays, J. W. (2017), “Improving Mechanical Properties of Carbon Nanotube Fibers through Simultaneous Solid-State Cycloaddition and Crosslinking,” Nanotechnology, 28(14), pp 145603–145612.
  • Sabet, S. M., Mahfuz, H., Terentis, A. C., Nezakat, M., and Hashemi, J. (2018), “Effects of POSS Functionalization of Carbon Nanotubes on Microstructure and Thermomechanical Behavior of Carbon Nanotube/Polymer Nanocomposites,” Journal of Materials Science, 53(12), pp 8963–8977.
  • Song, S., Cao, M., Shan, H., Du, C., and Li, B. (2018), “Polyhedral Oligomeric Silsesquioxane Functionalized Carbon Nanotubes for High Thermal Conductive Poly(vinylidene fluoride) Composite Membrane,” Materials & Design, 156, pp 242–251.
  • Wang, D., Zhang, J., Quan, L., Fu, L., Zhang, H., and Bai, Y. (2003), “Lanthanide Complex/Polymer Composite Optical Resin with Intense Narrow Band Emission, High Transparency and Good Mechanical Performance,” Journal of Materials Chemistry, 13(9), pp 2279–2284.
  • Pan, L., Huang, X., and Li, J. (2000), “Novel Single- and Double-Layer and Three-Dimensional Structures of Rare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction and Acidity Control in Crystal Structure Formation,” Angewandte Chemie-International Edition, 39(3), pp 527–530.
  • Mani, P., Ranjith, K. M., Mandal, S., and Paul, A. K. (2018), “Comparative Studies on Optical and Electronic Behavior of Lanthanide-Based Coordination Polymers: Synthesis, Structure, Absorption–Emission and Magnetic Properties,” Journal of Chemical Sciences, 130(6), pp 60–68.
  • Sun, Z. and Cheng, X. (2015), “Investigation of Carbon Nanotube–Containing Film on Silicon Substrates and Its Tribological Behavior,” Applied Surface Science, 355(1), pp 272–278.
  • Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C. (2008), “Chemical Oxidation of Multiwalled Carbon Nanotubes,” Carbon, 46(6), pp 833–840.
  • Athmouni, N., Mighri, F., and Elkoun, S. (2017), “Surface Modification of Multiwall Carbon Nanotubes and Its Effect on Mechanical and Through-Plane Electrical Resistivity of PEMFC Bipolar Plate Nanocomposites,” Polymers for Advanced Technologies, 29(1), pp 294–301.
  • Jiang, M. R., Zhou, H., and Cheng, X. H. (2019), “Effect of Rare Earth Surface Modification of Carbon Nanotubes on Enhancement of Interfacial Bonding of Carbon Nanotubes Reinforced Epoxy Matrix Composites,” Journal of Materials Science, 54(14), pp 10235–10248.
  • Lebedkin, S., Arnold, K., Hennrich, F., Krupke, R., Renker, B., and Kappes, M. M. (2003), “FTIR–Luminescence Mapping of Dispersed Single-Walled Carbon Nanotubes,” New Journal of Physics, 5(1), pp 140–151.
  • Stobinski, L., Lesiak, B., Kövér, L., Tóth, J., Biniak, S., Trykowski, G., and Judek, J. (2015), “Multiwall Carbon Nanotubes Purification and Oxidation by Nitric Acid Studied by the FTIR and Electron Spectroscopy Methods,” Journal of Alloys & Compounds, 501(1), pp 77–84.
  • Muilenberg, G. E. (1979), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer.
  • Lee, T. H. and Rabalais, J. W. (1977), “X-ray Photoelectron Spectra and Electronic Structure of Some Diamine Compounds,” Journal of Electron Spectroscopy & Related Phenomena, 11(1), pp 123–127.
  • Novosselov, A., Talik, E., and Pajaczkowska, A. (2003), “An X-ray Photoelectron Spectroscopy Study on Electron Structure of Some Ln-Containing (Ln = La, Pr, Nd and Gd) Oxide Crystals,” Journal of Alloys & Compounds, 351(1), pp 50–53.
  • Mercier, F., Alliot, C., Bion, L., Thromat, N., and Toulhoat, P. (2006), “XPS study of Eu(III) Coordination Compounds: Core Levels Binding Energies in Solid Mixed-Oxo-Compounds EumXxOy,” Journal of Electron Spectroscopy & Related Phenomena, 150(1), pp 21–26.
  • Harris, K. L., Pitenis, A. A., Sawyer, W. G., Krick, B. A., Blackman, G. S., Kasprzak, D. J., and Junk, C.P. (2015), “PTFE Tribology and the Role of Mechanochemistry in the Development of Protective Surface Films,” Macromolecules, 48(11), pp 3739–3745.
  • Sinnott, S. B., Jang, I., Phillpot, S. R., Dickrell, P. L., Burris, D. L., and Sawyer, W. G. (2006), “Mechanisms Responsible for the Tribological Properties of PTFE Transfer Films,” 231st National Meeting of the American Chemical Society, Atlanta, GA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.