268
Views
13
CrossRef citations to date
0
Altmetric
Articles

Sliding Behavior and Particle Emissions of Cu-Free Friction Materials with Different Contents of Phenolic Resin

, , &
Pages 770-779 | Received 26 Dec 2019, Accepted 04 Apr 2020, Published online: 12 May 2020

References

  • Chan, D. and Stachiowiak, G. W. (2004), “Review of Automotive Brake Friction Materials,” Proceedings of the Institution of Mechanical Engineers, 218, pp 953–966.
  • Filip, P., Kovarik, L., and Wright, M. A. (1997), “Automotive Brake Lining Characterization,” SAE Technical Paper 973024. doi:10.4271/973024.
  • Österle, W., Deutsch, C., Gradt, T., Orts-Gil, G., Schneider, T., and Dmitriev, A. I. (2014), “Tribological Screening Tests for the Selection of Raw Materials for Automotive Brake Pad Formulations,” Tribology International, 73, pp 148–155. doi:10.1016/j.triboint.2014.01.017
  • Dante, R. C. (2016), Handbook of Friction Materials and Their Applications, Cambridge, UK: Elsevier.
  • Österle, W., Prietzel, C., Kloß, H., and Dmitriev, A. I. (2010), “On the Role of Copper in Brake Friction Materials,” Tribology International, 43(12), pp 2317–2326. doi:10.1016/j.triboint.2010.08.005
  • Lee, P. W. and Filip, P. (2013), “Friction and Wear of Cu-Free and Sb-Free Enironmental Friendly Automotive Brake Materials,” Wear, 302, pp 1404–1413.
  • Straffelini, G., Ciudin, R., Ciotti, A., and Gialanella, S. (2015), “Review: Present Knowledge and Perspectives on the Role of Copper in Brake Materials and Related Environmental Issues: A Critical Assessment,” Environmental Pollution, 207, pp 211–219. doi:10.1016/j.envpol.2015.09.024
  • Kumar, M. and Bijwe, J. (2011), “Non-Asbestos Organic (NAO) Friction Composites: Role of Copper; Its Shape and Amount,” Wear, 270, pp 269–280. doi:10.1016/j.wear.2010.10.068
  • Barros, L., Poletto, J., Neis, P., Ferreira, N. F., and Pereira, C. (2019), “Influence of Copper on Automotive Brake Performance,” Wear, 426–427, pp. 741–749. doi:10.1016/j.wear.2019.01.055
  • Dante, R., Vannucci, F., Durando, P., Galetto, E., and Kajadas, C. K. (2009), “Relationship between Wear of Friction Materials and Dissipated Power Density,” Tribology International, 42, pp 958–963. doi:10.1016/j.triboint.2009.01.006
  • Eriksson, M. and Jacobson, S. (2000), “Tribological Surfaces of Organic Brake Pads,” Tribology International, 33(12), pp 817–827. doi:10.1016/S0301-679X(00)00127-4
  • Österle, W., Griepentrog, M., Gross, T., and Urban, I. (2001), “Chemical and Microstructural Changes Induced by Friction and Wear of Brakes,” Wear, 251, pp 1469–1476.
  • Chandra Verma, P., Menapace, L., Bonfanti, A., Ciudin, R., Gialanella, S., and Straffelini, G. (2015), “Braking Pad–Disc System: Wear Mechanisms and Formation of Wear Fragments,” Wear, 322–323, pp 251–258. doi:10.1016/j.wear.2014.11.019
  • Ostermeyer, G. P. and Müller, M. (2006), “Dynamic Interaction of Friction and Surface Topography in Brake Systems,” Tribology International, 39(5), pp 370–380. doi:10.1016/j.triboint.2005.04.018
  • Xiao, X., Yin, Y., Bao, J., Lu, L., and Feng, X. (2016), “Review on the Friction and Wear of Brake Materials,” Advances in Mechanical Engineering, 8, pp 1–10. doi:10.1177/1687814016647300
  • Aranganathan, N. and Bijwe, J. (2016), “Comparative Performance Evaluation of NAO Friction Materials Containing Natural Graphite and Thermo-Graphite,” Wear, 358–359, pp 17–22.
  • Menapace, C., Leonardi, M., Matějka, V., Gialanella, S., and Straffelini, G. (2018), “Dry Sliding Behavior and Friction Layer Formation in Copper-Free Barite Containing Friction Materials,” Wear, 398–399, pp 191–200.
  • Leonardi, M., Menapace, C., Matějka, V., Gialanella, S., and Straffelini, G. (2017), “Pin-on-Disc Investigation on Copper-Free Friction Materials Dry Sliding against Cast Iron,” Tribology International, 119, pp 73–81. doi:10.1016/j.triboint.2017.10.037
  • Federici, M., Alemani, M., Menapace, C., Gialanella, S., Perricone, G., and Straffelini, G. (2019), “A Critical Comparison of Dynamometer Data with Pin-on-Disc Data for the Same Two Friction Material Pairs—A Case Study,” Wear, 424–425, pp 40–47.
  • Cho, M. H., Kim, S. J., Kim, D. and Jang, H. (2005), “Effects of Ingredients on Tribological Characteristics of a Brake Lining: An Experimental Case Study,” Wear, 258, pp 1682–1687. doi:10.1016/j.wear.2004.11.021
  • Gurunath, P. V. and Bijwe, J. (2007), “Friction and Wear Studies on Brake-Pad Materials Based on Newly Developed Resin,” Wear, 263, pp 1212–1219.
  • Kim, Y. C., Cho, M. H., Kim, S. and Jang, H. (2008), “The Effect of Phenolic Resin, Potassium Titanate, and CNSL on the Tribological Properties of Brake Friction Materials,” Wear, 264, pp 204–210.
  • Cai, P., Wang, Y., Wang, T., and Wang, Q. (2015), “Effect of Resins on Thermal, Mechanical and Tribological Properties of Friction Materials,” Tribology International, 87, pp 1–10. doi:10.1016/j.triboint.2015.02.007
  • Joo, B. S., Chang, Y. H., Seo, H. J., and Jang, H. (2019), “Effects of Binder Resin on Tribological Properties and Particle Emissions of Brake Linings,” Wear, 434–435, pp 1–9.
  • Jara, D. C. and Jang, H. (2019), “Synergistic Effects of the Ingredients of Brake Friction Materials on Friction and Wear: A Case Study on Phenolic Resin and Potassium Titanate,” Wear, 430–431, pp 222–232.
  • Shin, M. W., Kim, J. W., Joo, B. S., and Jang, H. (2015), “Wear and Friction-Induced Vibration of Brake Friction Materials with Different Weight Average Molar Mass Phenolic Resin,” Tribology Letters, 58, pp 1–10. doi:10.1007/s11249-015-0486-5
  • Alemani, M., Nosko, O., Metinoz, I., and Olofsson, U. (2016), “A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs,” SAE International Journal of Materials Manufacturing, 9, pp 147–157. doi:10.4271/2015-01-2665
  • Menapace, C., Leonardi, M., Secchi, M., Bonfanti, A., Gialanella, S., and Straffelini, G. (2019), “Thermal Behavior of a Phenolic Resin for Brake Pad Manufacturing,” Journal of Thermal Analysis and Calorimetry, 137, pp 759–766. doi:10.1007/s10973-019-08004-2
  • Olofsson, U., Olander, L., and Jansson, A. (2009), “A Study of Airborne Wear Particles Generated from a Sliding Contact,” Journal of Tribology, 131(4), pp 1–4.
  • Wahlstrom, J., Soderberg, A., Olander, L., Jansson, A., and Olofsson, U. (2010), “A Pin-on-Disc Simulation of Airborne Wear Particles from Disc Brakes,” Wear, 268, pp 763–769.
  • Olofsson, U. (2011), “A Study of Airborne Wear Particles Generated from the Train Traffic—Block Braking Simulation in a Pin-on-Disc Machine,” Wear, 271, pp 86–91.
  • Menapace, C., Leonardi, M., Perricone, G., Bortolotti, M., Straffelini, G., and Gialanella, S. (2017), “Pin-on-Disc Study of Brake Friction Materials with Ball-Milled Nanostructured Components,” Materials & Design, 115, pp 287–298. doi:10.1016/j.matdes.2016.11.065
  • Straffelini, G. and Maines, L. (2013), “The Relationship between Wear of Semimetallic Friction Materials and Pearlitic Cast Iron in Dry Sliding,” Wear, 307, pp 75–80.
  • Archard, J. F. (1953), “Contact and Rubbing of Flat Surfaces,” Journal of Applied Physics, 24, pp 982–988. doi:10.1063/1.1721448
  • Archard, J. F. (1986), “Friction between Metal Surfaces,” Wear, 113, pp 3–16. doi:10.1016/0043-1648(86)90052-9
  • Nosko, O. and Olofsson, U. (2017), “Effective Density of Airborne Wear Particles from Car Brake Materials,” Journal of Aerosol Science, 107, pp 94–106. doi:10.1016/j.jaerosci.2017.02.014
  • Nosko, O. and Olofsson, U. (2017), “Quantification of Ultrafine Airborne Particulate Matter Generated by the Wear of Car Brake Materials,” Wear, 374–375, pp 92–96.
  • Namgung, H.-G., Kim, J. B., Kim, M. S., Kim, M., Park, S., Woo, S.-H., Bae, G.-N., Park, D., and Kwon, S.-B. (2017), “Size Distribution Analysis of Airborne Wear Particles Released by Subway Brake System,” Wear, 372–373, pp 169–176. doi:10.1016/j.wear.2016.12.026
  • Alemani, M., Gialanella, S., Straffelini, G., Ciudin, R., Olofsson, U., Perricone, G., and Metinoz, I. (2017), “Dry Sliding of a Low Steel Friction Material against Cast Iron at Different Loads: Characterization of the Friction Layer and Wear Debris,” Wear, 376–377, pp 1450–1459.
  • Mirzababaei, S. and Filip, P. (2017), “Impact of Humidity on Wear of Automotive Friction Mataerials,” Wear, 376–377, pp 717–726.
  • Federici, M., Gialanella, S., Leonardi, M., Perricone, G., and Straffelini, G. (2018), “A Preliminary Investigation on the Use of the Pin-on-Disc Test to Simulate Off-Brake Friction and Wear Characteristics of Friction Materials,” Wear, 410, pp 202–209.
  • Federici, M., Perricone, G., Gialanella, S., and Straffelini, G. (2018), “Sliding Behavior of Friction Material against Cermet Coatings: A Pin-on-Disc Study of the Running-In Stage,” Tribology Letters, 66(2), pp 1–11. doi:10.1007/s11249-018-1004-3
  • Straffelini, G., Verma, P. C., Metinoz, I., Ciudin, R., Perricone, G., and Gialanella, S. (2016), “Wear Behavior of a Low-Metallic Friction Material Dry Sliding against Cast Iron Disc: Role of the Heat-Treatment of the Disc,” Wear, 348, pp 10–16.
  • Straffelini, G. (2015), Friction and Wear, Methodologies for Design and Control, Switzerland: Springer Verlag.
  • Wu, Y., Zeng, M., Xu, Q., Hou, S., Jin, H., and Fan, L. (2012), “Effects of Glass-to-Rubber Transition of Thermosetting Resin Matrix on the Friction and Wear Properties of Friction Materials,” Tribology International, 54, pp 51–57. doi:10.1016/j.triboint.2012.05.018
  • El-Tayeb, N. S. M. and Liew, K. W. (2009), “On the Dry and Wet Sliding Performance of Potentially New Frictional Brake Pad Materials for Automotive Industry,” Wear, 266, pp 275–287.
  • Stott, F. H. (1998), “The Role of Oxidation in the Wear of Metals,” Tribology International, 31, pp 61–71. doi:10.1016/S0301-679X(98)00008-5
  • Straffelini, G., Trabucco, D., Molinari, and A. (2001), “Oxidative Wear of Heat-Treated Steels,” Wear, 250, pp 485–491.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.