405
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Electroplated Co-Ni/WS2 Composite Coating with Excellent Tribological and Anticorrosion Performance

, , , , &
Pages 857-866 | Received 12 Dec 2019, Accepted 20 Apr 2020, Published online: 27 Jul 2020

References

  • Chen, C., Feng, X., and Shen, Y. (2020), “Microstructures and Properties of TiCp/Al Coating Synthesized on Ti-6Al-4V Alloy Substrate Using Mechanical Alloying Method,” Journal of Alloys and Compounds, 813, pp 1–10. doi:10.1016/j.jallcom.2019.152223
  • Xu, H., Zang, J., Yuan, Y., Tian, P., and Wang, Y. (2019), “Preparation of Multilayer Graphene Coatings with Interfacial Bond to Mild Steel via Covalent Bonding for High Performance Anticorrosion and Wear Resistance,” Carbon, 154, pp 156–168. doi:10.1016/j.carbon.2019.07.097
  • Ding, H. H., Fridrici, V., Bouvard, G., Geringer, J., Fontaine, J., and Kapsa, P. (2019), “Influence of Deposition Positions on Fretting Behaviors of DLC Coating on Ti-6Al-4V,” Tribology Transactions, 62(6), pp 1155–1172. doi:10.1080/10402004.2019.1654585
  • Parau, A., Vitelaru, C., Balaceanu, M., Braic, V., Constantin, L., Braic, M., and Vladescu, A. (2016), “TiSiC, TiSiC-Zr, and TiSiC-Cr Coatings—Corrosion Resistance and Tribological Performance in Saline Solution,” Tribology Transactions, 59(1), pp 72–79. doi:10.1080/10402004.2015.1077406
  • Leimbach, M., Tschaar, C., Schmidt, U., and Bund, A. (2018), “Electrochemical Characterization of Chromium Deposition from Trivalent Solutions for Decorative Applications by EQCM and Near-Surface pH Measurements,” Electrochimica Acta, 270, pp 104–109. doi:10.1016/j.electacta.2018.03.011
  • Ma, C., Wang, S., and Walsh, F. (2015), “Electrodeposition of Nanocrystalline Nickel–Cobalt Binary Alloy Coatings: A Review,” Transactions of the IMF, 93(2), pp 104–112. doi:10.1179/0020296714Z.000000000218
  • Ma, C., Wang, S., Wang, L., Walsh, F., and Wood, R. (2013), “The Role of a Tribofilm and Wear Debris in the Tribological Behaviour of Nanocrystalline Ni-Co Electrodeposits,” Wear, 306(1–2), pp 296–303. doi:10.1016/j.wear.2013.01.121
  • Ma, C., Wang, S., Low, C., Wang, L., and Walsh, F. (2014), “Effects of Additives on Microstructure and Properties of Electrodeposited Nanocrystalline Ni-Co Alloy Coatings of High Cobalt Content,” Transactions of the IMF, 92(4), pp 189–195. doi:10.1179/0020296713Z.000000000115
  • Mandal, P. and Mondal, S. C. (2018), “Investigation of Electro-Thermal Property for Cu-MWCNT Composite Coating on Anodized 6061 Aluminium Alloy,” Applied Surface Science, 454, pp 138–147. doi:10.1016/j.apsusc.2018.05.130
  • Chen, J., Li, J., Xiong, D., He, Y., Ji, Y., and Qin, Y. (2016), “Preparation and Tribological Behavior of Ni–Graphene Composite Coating under Room Temperature,” Applied Surface Science, 361, pp 49–56. doi:10.1016/j.apsusc.2015.11.094
  • Jiang, W., Shen, L., Qiu, M., Wang, X., Fan, M., and Tian, Z. (2018), “Preparation of Ni-SiC Composite Coatings by Magnetic Field–Enhanced Jet Electrodeposition,” Journal of Alloys and Compounds, 762, pp 115–124. doi:10.1016/j.jallcom.2018.05.097
  • Taha, M. A., Elkomy, G., Mostafa, H. A., and Gouda, E. S. (2018), “Effect of ZrO2 Contents and Ageing Times on Mechanical and Electrical Properties of Al–4.5 wt% Cu Nanocomposites Prepared by Mechanical Alloying,” Materials Chemistry and Physics, 206, pp 116–123.
  • Walsh, F. and Ponce de Leon, C. (2014), “A Review of the Electrodeposition of Metal Matrix Composite Coatings by Inclusion of Particles in a Metal Layer: An Established and Diversifying Technology,” Transactions of the IMF, 92(2), pp 83–98. doi:10.1179/0020296713Z.000000000161
  • Jamshidi, R., Bayat, O., and Heidarpour, A. (2019), “Tribological and Corrosion Behavior of Flame Sprayed Al–10 wt% Ti3SiC2 Composite Coating on Carbon Steel,” Surface and Coatings Technology, 358, pp 1–10.
  • Krawiec, H., Vignal, V., Krystianiak, A., Gaillard, Y., and Zimowski, S. (2019), “Mechanical Properties and Corrosion Behaviour after Scratch and Tribological Tests of Electrodeposited Co-Mo/TiO2 Nano-Composite Coatings,” Applied Surface Science, 475, pp 162–174. doi:10.1016/j.apsusc.2018.12.099
  • Li, Z., Farhat, Z., Jarjoura, G., Fayyad, E., Abdullah, A., and Hassan, M. (2019), “Synthesis and Characterization of Scratch Resistant Ni-P-Ti Based Composite Coating,” Tribology Transactions, 62, pp 880–896. doi:10.1080/10402004.2019.1634227
  • Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S., and Tenne, R. (1997), “Hollow Nanoparticles of WS2 as Potential Solid-State Lubricants,” Nature, 387(6635), pp 791–793. doi:10.1038/42910
  • Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.-M., and Fleischer, N. (2005), “Ultralow-Friction and Wear Properties of IF-WS2 under Boundary Lubrication,” Tribology Letters, 18(4), pp 477–485. doi:10.1007/s11249-005-3607-8
  • Prasad, S., Zabinski, J., and McDevitt, N. (1995), “Friction Behavior of Pulsed Laser Deposited Tungsten Disulfide Films,” Tribology Transactions, 38(1), pp 57–62. doi:10.1080/10402009508983380
  • Scharf, T., Rajendran, A., Banerjee, R., and Sequeda, F. (2009), “Growth, Structure and Friction Behavior of Titanium Doped Tungsten Disulphide (Ti-WS2) Nanocomposite Thin Films,” Thin Solid Films, 517(19), pp 5666–5675. doi:10.1016/j.tsf.2009.02.103
  • García-Lecina, E., García-Urrutia, I., Díez, J., Fornell, J., Pellicer, E., and Sort, J. (2013), “Codeposition of Inorganic Fullerene-Like WS2 Nanoparticles in an Electrodeposited Nickel Matrix under the Influence of Ultrasonic Agitation,” Electrochimica Acta, 114, pp 859–867. doi:10.1016/j.electacta.2013.04.088
  • Tudela, I., Zhang, Y., Pal, M., Kerr, I., and Cobley, A. J. (2015), “Ultrasound-Assisted Electrodeposition of Thin Nickel-Based Composite Coatings with Lubricant Particles,” Surface and Coatings Technology, 276, pp 89–105. doi:10.1016/j.surfcoat.2015.06.030
  • Sivandipoor, I. and Ashrafizadeh, F. (2012), “Synthesis and Tribological Behaviour of Electroless Ni-P-WS2 Composite Coatings,” Applied Surface Science, 263, pp 314–319. doi:10.1016/j.apsusc.2012.09.051
  • He, Y., Sun, W., Wang, S., Reed, P., and Walsh, F. (2017), “An Electrodeposited Ni-P-WS2 Coating with Combined Super-Hydrophobicity and Self-Lubricating Properties,” Electrochimica Acta, 245, pp 872–882. doi:10.1016/j.electacta.2017.05.166
  • Katz, A., Redlich, M., Rapoport, L., Wagner, H., and Tenne, R. (2006), “Self-Lubricating Coatings Containing Fullerene-Like WS2 Nanoparticles for Orthodontic Wires and Other Possible Medical Applications,” Tribology Letters, 21(2), pp 135–139. doi:10.1007/s11249-006-9029-4
  • Saini, R., Roy, D., Das, A., Dixit, A., and Nayak, G. C. (2016), “Tribological Behaviour and Characterisation of Ni-WS2 Composite Coating,” International Journal of Surface Science and Engineering, 10(3), pp 240–252. doi:10.1504/IJSURFSE.2016.076994
  • Wang, L., Gao, Y., Xue, Q., Liu, H., and Xu, T. (2005), “Microstructure and Tribological Properties of Electrodeposited Ni-Co Alloy Deposits,” Applied Surface Science, 242(3–4), pp 326–332. doi:10.1016/j.apsusc.2004.08.033
  • He, Y., Wang, S., Walsh, F., Chiu, Y. L., and Reed, P. (2016), “Self-Lubricating Ni-P-MoS2 Composite Coatings,” Surface and Coatings Technology, 307, pp 926–934. doi:10.1016/j.surfcoat.2016.09.078
  • Zhou, X. W., Shen, Y. F., Jin, H. M., and Zheng, Y. Y. (2012), “Microstructure and Depositional Mechanism of Ni-P Coatings with Nano-Ceria Particles by Pulse Electrodeposition,” Transactions of the Nonferrous Metals Society of China, 22(8), pp 1981–1988. doi:10.1016/S1003-6326(11)61417-9
  • Liu, C., Su, F., and Liang, J. (2016), “Nanocrystalline Co-Ni Alloy Coating Produced with Supercritical Carbon Dioxide Assisted Electrodeposition with Excellent Wear and Corrosion Resistance,” Surface and Coatings Technology, 292, pp 37–43. doi:10.1016/j.surfcoat.2016.03.027
  • Bai, A. and Hu, C. C. (2005), “Composition Controlling of Co-Ni and Fe-Co Alloys Using Pulse-Reverse Electroplating through Means of Experimental Strategies,” Electrochimica Acta, 50(6), pp 1335–1345. doi:10.1016/j.electacta.2004.07.055
  • Lixia, Y., Ying, L., Guannan, L., Zhenghui, L., and Guixiang, W. (2015), “Preparation and Properties of Electroless Plating Wear-Resistant and Antifriction Composite Coatings Ni-P-SiC-WS2,” Rare Metal Materials and Engineering, 44(1), pp 28–31. doi:10.1016/S1875-5372(15)30006-0
  • Xie, Z. W., Wang, L. P., Wang, X. F., Huang, L., Yang, L., and Yan, J. C. (2011), “Mechanical Performance and Corrosion Behavior of TiAlSiN/WS2 Multilayer Deposited by Multi-Plasma Immersion Ion Implantation and Deposition and Magnetron Sputtering,” Transactions of the Nonferrous Metals Society of China, 21, pp s470–s475. doi:10.1016/S1003-6326(11)61627-0
  • Karthikeyan, S., Jeeva, P., Arivazhagan, N., Umasankar, V., Srinivasan, K., and Paramasivam, M. (2013), “Wear, Hardness and Corrosion Resistance Characteristics of Tungsten Sulfide Incorporated Electroless Ni-P Coatings,” Procedia Engineering, 64, pp 720–726. doi:10.1016/j.proeng.2013.09.147
  • Lu, G. and Zangari, G. (2002), “Corrosion Resistance of Ternary Ni-P Based Alloys in Sulfuric Acid Solutions,” Electrochim Acta, 47(18), pp 2969–2979. doi:10.1016/S0013-4686(02)00198-6
  • Ranganatha, S., Venkatesha, T., and Vathsala, K. (2012), “Electroless Ni-W-P Coating and Its Nano-WS2 Composite: Preparation and Properties,” Industrial & Engineering Chemistry Research, 51(23), pp 7932–7940. doi:10.1021/ie300104w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.