400
Views
10
CrossRef citations to date
0
Altmetric
Articles

Wear and Friction Behavior of TiB2 Thin Film–Coated AISI 52100 Steels under the Lubricated Condition

ORCID Icon, , &
Pages 1008-1019 | Received 16 Apr 2020, Accepted 15 Jun 2020, Published online: 17 Aug 2020

References

  • Gilmore, R., Baker M. A., Gibson, P. N., and Gissler, W. (1998), “Preparation and Characterisation of Low-Friction TiB2-Based Coatings by Incorporation of C or MoS2,” Surface and Coatings Technology, 105, pp 45–50. doi:10.1016/S0257-8972(98)00445-9
  • Wang, H., Wang, B., Li, S., Xue, Q., and Huang, F. (2013), “Toughening Magnetron Sputtered TiB2 Coatings by Ni Addition,” Surface and Coatings Technology, 232, pp 767–774. doi:10.1016/j.surfcoat.2013.06.094
  • Lotfi, B. (2010), “Elevated Temperature Oxidation Behavior of HVOF Sprayed TiB2 Cermet Coating,” Transactions of Nonferrous Metals Society of China, 20, pp 243–247. doi:10.1016/S1003-6326(09)60129-1
  • Chu, K., Lu, Y. H., and Shen, Y. G. (2008), “Structural and Mechanical Properties of Titanium and Titanium Diboride Monolayers and Ti/TiB2 Multilayers,” Thin Solid Films, 516, pp 5313–5317. doi:10.1016/j.tsf.2007.07.042
  • Lin, Y., Lei, Y., Fu, H., and Lin, J. (2015), “Mechanical Properties and Toughening Mechanism of TiB2/NiTi Reinforced Titanium Matrix Composite Coating by Laser Cladding,” Materials & Design, 80, pp 82–88.
  • Lim, J.-W., Lee, J.-J., Ahn, H., and Rie, K.-T. (2003), “Mechanical Properties of TiN/TiB2 Multilayers Deposited by Plasma-Enhanced Chemical Vapor Deposition,” Surface and Coatings Technology, 174–175, pp 720–724. doi:10.1016/S0257-8972(03)00574-7
  • Lofaj, F., Moskalewicz, T., Cempura, G., Mikula, M., Dusza, J., and Czyrska-Filemonowicz, A. (2013), “Nano Hardness and Tribological Properties of NC-TiB2 Coatings,” Journal of the European Ceramic Society, 33, pp 2347–2353. doi:10.1016/j.jeurceramsoc.2013.02.024
  • Panich, N. (2007), Fabrication, Characterisation and Property Modelling of TiB2 Based Nanostructured Coatings, School of Materials Science and Engineering, Nanyang Technological University: Singapore.
  • Dong, L., Li, D. J., Zhang, S., Yan, J. Y., Liu, M. Y., Gao, C. K., Wang, N., Liu, G. Q., Gu, H. Q., and Wan, R. X. (2012), “Microstructure and Mechanical Properties of As-Deposited and Annealed TiB2/BN Superlattice Coatings,” Thin Solid Films, 520, pp 5328–5332. doi:10.1016/j.tsf.2012.03.109
  • Wong, M. S. and Lee, Y. C. (1999), “Deposition and Characterization of Ti-B-N Monolithic and Multilayer Coatings,” Surface and Coatings Technology, 120–121, pp 194–199. doi:10.1016/S0257-8972(99)00454-5
  • Berger, M., Coronel, E., and Olsson, E. (2004), “Microstructure of DC Magnetron Sputtered TiB2 Coatings,” Surface and Coatings Technology, 185(2–3), pp 240–244. doi:10.1016/j.surfcoat.2003.12.029
  • Zhang, T. F., Gan, B., Park, S., Wang, Q. M., and Kim, K. H. (2014), “Influence of Negative Bias Voltage and Deposition Temperature on Microstructure and Properties of Superhard TiB2 Coatings Deposited by High Power İmpulse Magnetron Sputtering,” Surface and Coatings Technology, 253, pp 115–122. doi:10.1016/j.surfcoat.2014.05.023
  • Holmberg, K. and Matthews, A. (2009), Properties, Mechanisms, Techniques, and Applications in Surface Engineering, 2nd Ed., Elsevier: Oxford, UK.
  • ASTM International. (2016), “Standard Test Method for Linearly Reciprocating Ball‐on‐Flat Sliding Wear,” G133-05.
  • Dowson, D., Priest, M., Dalmaz, G., and Lubrecht, A. A. (2003), Tribological Research and Design for Engineering Systems, Elsevier: Amsterdam.
  • Hamrock B. J., and Dowson D. (1977), “Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III–Fully Flooded Results,” Journal of Lubrication Technology, 99(2), pp 264–275. doi:10.1115/1.3453074.
  • Dowson, D. (1995), “Elastohydrodynamic and Micro‐Elastohydrodynamic Lubrication,” Wear, 190(2), pp 125‐138. doi:10.1016/0043-1648(95)06660-8
  • Lubrecht, A. A., Hvenner, C., and Colin, F. (2009), “Film Thickness Calculation in Elastohydrodynamic Lubricated Line and Elliptical Contacts: The Dowson, Higginson, Hamrock Contribution,” Journal of Engineering Tribology, 223, pp 511‐115. doi:10.1243/13506501JET508
  • Kelesoglu, E. and Mitterer, C. (1998), “Structure and Properties of TiB2 Based Coatings Prepared by Unbalanced DC Magnetron Sputtering,” Surface and Coatings Technology, 98(1–3), pp 1483–1489. doi:10.1016/S0257-8972(97)00397-6
  • Wang, Z. T., Zhou, X. H., and Zhao, G. G. (2008), “Microstructure and Formation Mechanism of In-Situ TiC-TiB2/Fe Composite Coating,” Transactions of Nonferrous Metals Society of China (English Edition), 18(4), pp 831–835. doi:10.1016/S1003-6326(08)60144-2
  • Sahoo, S. and Singh, S. K. (2017), “Synthesis of TiB2 by Extended Arc Thermal Plasma,” Ceramics International, 43(17), pp 15561–15566. doi:10.1016/j.ceramint.2017.08.108
  • Rebholz, C., Leyland, A., Schneider, J. M., Voevodin, A. A., and Matthews, A. (1999), “Structure, Hardness and Mechanical Properties of Magnetron-Sputtered Titanium–Aluminum Boride Films,” Surface and Coatings Technology, 120–121, pp 412–417. doi:10.1016/S0257-8972(99)00490-9
  • Wei, D., Tongjun, Z., Junyou, Y., Rongxing, S., and Juliang, X. (2008), “Structure and Properties of TiB2 Thin Films Deposited at Low Temperatures Using RF Magnetron Sputtering,” Journal of Wuhan University of Technology-Materials, 23(5), pp 666–669.
  • Losbichler, P., Mitterer, C., Gibson, P. N., Gissler, W., Hofer, F., and Warbichler, P. (1997), “Co-Sputtered Films within the Quasi-Binary System TiN-TiB2,” Surface and Coatings Technology, 94–95, pp 297–302. doi:10.1016/S0257-8972(97)00440-4
  • Ding, J. C., Zhang, T. F., Yun, J. M., Kim, K. H., and Wang, Q. M. (2018), “Effect of Cu Addition on the Microstructure and Properties of TiB2 Films Deposited by a Hybrid System Combining High Power Impulse Magnetron Sputtering and Pulsed dc Magnetron Sputtering,” Surface and Coatings Technology, 344, pp 441–448. doi:10.1016/j.surfcoat.2018.03.026
  • Kustas, F., Mishra, B., and Zhou, J., (2002), “Fabrication and Characterization of TiB2/TiC and Tungsten Co-Sputtered Wear Coatings,” Surface and Coatings Technology, 153, pp 25–30. doi:10.1016/S0257-8972(01)01520-1
  • Rao, J. Cruz, R., Lawson, K. J., and Nicholls, J. R. (2004), “Sputtered DLC-TiB2 Multilayer Films for Tribological Applications,” Diamond & Related Materials, 13, pp 2221–2225.
  • Mikula, M., Grančič, B., Buršíková, V., Csuba, A., Držík, M., Kavecký, S., Plecenik, A., and Kúš, P. (2007), “Mechanical Properties of Superhard TiB2 Coatings Prepared by DC Magnetron Sputtering,” Vacuum, 82(2), pp 278–281. doi:10.1016/j.vacuum.2007.07.036
  • Berger, M., Karlsson, L., Larsson, M., and Hogmark, S. (2001), “Low Stress TiB2 Coatings with İmproved Tribological Properties,” Thin Solid Films, 401(1–2), pp 179–186. doi:10.1016/S0040-6090(01)01481-X
  • Herr, W., Matthes, B., Broszeit, E., and Kloos, K. H. (1991), “Fundamental Properties and Wear Resistance of RF-Sputtered TiB2 and Ti(B, N) Coatings,” Materials Science and Engineering: A, 140, pp 616–624. doi:10.1016/0921-5093(91)90486-7
  • Prakash, B., Ftikos, C., and Celis, J. P. (2002), “Fretting Wear Behavior of PVD TiB2 Coatings,” Surface and Coatings Technology, 154(2–3), pp 182–188. doi:10.1016/S0257-8972(02)00035-X
  • Park, B., Jung, D.-H., Kim, H., Yoo, K.-C., Lee, J.-J., and Joo, J. (2005), “Adhesion Properties of TiB2 Coatings on Nitrided AISI H13 Steel,” Surface and Coatings Technology, 200(1–4), pp 726–729. doi:10.1016/j.surfcoat.2005.01.064
  • Panich, N. and Sun, Y. (2006), “Effect of Substrate Rotation on Structure, Hardness, and Adhesion of Magnetron Sputtered TiB2 Coating on High-Speed Steel,” Thin Solid Films, 500(1–2), pp 190–196. doi:10.1016/j.tsf.2005.11.055
  • Berger, M. and Hogmark, S. (2002), “Evaluation of TiB2 Coatings in Sliding Contact against Aluminum,” Surface and Coatings Technology, 149(1), pp 14–20. doi:10.1016/S0257-8972(01)01361-5
  • Xia, M. J., Ding, H. Y., Zhou, G. H., and Zhang, Y. (2013), “Improvement of Adhesion Properties of TiB2 Films on 316L Stainless Steel by Ti İnterlayer Films,” Transactions of Nonferrous Metals Society of China, 23(10), pp 2957–2961. doi:10.1016/S1003-6326(13)62820-4
  • Pshyk, A. V., Coy, L. E., Yate, L., Załęski, K., Nowaczyk, G., Pogrebnjak, A. D., and Jurga, S. (2016), “Combined Reactive/Non-Reactive DC Magnetron Sputtering of High Temperature Composite AlN-TiB2-TiSi2,” Materials & Design, 94, pp 230–239. doi:10.1016/j.matdes.2015.12.174
  • Vieira, T., Ferreira, R. P., Kuchiishi, A. K., Bernucci, L. L. B., and Sinatora, A. (2015), “Evaluation of Friction Mechanisms and Wear Rates on Rubber Tire Materials by Low-Cost Laboratory Tests,” Wear, 328–329, pp 556–562.
  • Rabinowicz, E. and Foster, R. G. (1964), “Effect of Surface Energy on the Wear Process,” Journal of Basic Engineering, 86(2), pp 306–310.  doi:10.1115/1.3653067
  • Kalin, M. and Polajnar, M. (2013), “The Effect of Wetting and Surface Energy on the Friction and Slip in Oil-Lubricated Contacts,” Tribology Letters, 52(2), pp 185–194. doi:10.1007/s11249-013-0194-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.