230
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Study on Oil Distribution and Oil Content of Oil Bath Lubrication Bearings Based on MPS Method

ORCID Icon, , &
Pages 942-951 | Received 20 Apr 2022, Accepted 10 Aug 2022, Published online: 06 Sep 2022

References

  • Wu, W., Hu, C., Hu, J., and Yuan, S. (2016), “Jet Cooling for Rolling Bearings: Flow Visualization and Temperature Distribution,” Applied Thermal Engineering, 105, pp 217–224. doi:10.1016/j.applthermaleng.2016.05.147
  • He, F., Xie, G., and Luo, J. (2020), “Electrical Bearing Failures in Electric Vehicles,” Friction, 8, pp 4–28. doi:10.1007/s40544-019-0356-5
  • Harris, T. A., Barnsby, R. M., and Kotzalas, M. N. (2001), “A Method to Calculate Frictional Effects in Oil-Lubricated Ball Bearings,” Tribology Transactions, 44(4), pp 704–708. doi:10.1080/10402000108982514
  • Lee, C. W., Palma, P. C., Simmons, K., and Pickering, S. J. (2005), “Comparison of Computational Fluid Dynamics and Particle Image Velocimetry Data for the Airflow in an Aeroengine Bearing Chamber,” Journal of Engineering for Gas Turbines and Power, 127(4), pp 697–703. doi:10.1115/1.1924635
  • Wittig, S., Glahn, A., and Himmelsbach, J. (1994), “Influence of High Rotational Speeds on Heat Transfer and Oil Film Thickness in Aero-Engine Bearing Chambers,” Journal of Engineering for Gas Turbines & Power, 116(2), pp 395–401.
  • Glahn, A. and Wittig, S. (1995), “Two-Phase Air/Oil Flow in Aero Engine Bearing Chambers: Characterization of Oil Film Flows,” International Journal of Multiphase Flow, 23(3), pp 578–583. doi:10.1115/1.2816687
  • Farrall, M. B., Hibberd, S., and Simmons, K. (2000), “Computational Modelling of Two-Phase Air/Oil Flow within an Aero-Engine Bearing Chamber,” Proceedings of the ASME "Fluids Engineering Division Summer Meeting, Boston, Massachusetts, USA, June 2000, ASME, New York, US.
  • Farrall, M., Simmons, K., Hibberd, S., and Gorse, P. (2006), “A Numerical Model for Oil Film Flow in an Aeroengine Bearing Chamber and Comparison to Experimental Data,” Journal of Engineering for Gas Turbines and Power, 128(1), pp 111–117. doi:10.1115/1.1924719
  • Gao, W., Nelias, D., Li, K., Liu, Z., and Lyu, Y. (2019), “A Multiphase Computational Study of Oil Distribution inside Roller Bearings with Under-Race Lubrication,” Tribology International, 140, pp 105862. doi:10.1016/j.triboint.2019.105862
  • Adeniyi, A., Morvan, H., and Simmons, K. (2015), “A Multiphase Computational Study of Oil–Air Flow within the Bearing Sector of Aeroengines,” Proceedings of ASME Turbo 6 Expo 2015 “Turbine Technical Conference and Exposition”, Montreal, Canada, June 2015, ASME, New York, US.
  • Coe, H. H. and Zaretsky, E. V. (1978), “Predicted and Experimental Performance of Jet-Lubricated 120-Millimeter-Bore Ball Bearings Operating to 2.5 Million DN.” NASA, Washington, US, TP-1196.
  • Coe, H. H. and Huller, F. T. (1980), “Comparison of Predicted and Experimental Performance of Large-Bore Roller Bearing Operating to 3.0 Million DN.” NASA, Washington, US, TP-1599.
  • Parker, R. J. (1984), “Comparison of Predicted and Experimental Thermal Performance of Angular-Contact Ball Bearings.”
  • Hu, J., Wu, W., Wu, M., and Yuan, S. (2014), “Numerical Investigation of the Air–Oil Two-Phase Flow inside an Oil-Jet Lubricated Ball Bearing,” International Journal of Heat and Mass Transfer, 68, pp 85–93. doi:10.1016/j.ijheatmasstransfer.2013.09.013
  • Wu, W., Hu, J., Yuan, S., and Hu, C. (2016), “Numerical and Experimental Investigation of the Stratified Air–Oil Flow inside Ball Bearings,” International Journal of Heat and Mass Transfer, 103, pp 619–626. doi:10.1016/j.ijheatmasstransfer.2016.07.090
  • Wu, W., Hu, C., Hu, J., Yuan, S., and Zhang, R. (2017), “Jet Cooling Characteristics for Ball Bearings Using the VOF Multiphase Model,” International Journal of Thermal Sciences, 116, pp 150–158. doi:10.1016/j.ijthermalsci.2017.02.014
  • Yan, K., Wang, Y., Zhu, Y., and Hong, J. (2017), “Investigation on the Effect of Sealing Condition on the Internal Flow Pattern of High-Speed Ball Bearing,” Tribology International, 105, pp 85–93. doi:10.1016/j.triboint.2016.09.032
  • Yan, K., Dong, L., Zheng, J., Li, B., Wang, D., and Sun, Y. (2018), “Flow Performance Analysis of Different Air Supply Methods for High Speed and Low Friction Ball Bearing,” Tribology International, 121, pp 94–107. doi:10.1016/j.triboint.2018.01.035
  • Ge, L., Wang, C., Yan, K., Zhu, Y., and Hong, J. (2021), “Design of Groove Structures for Bearing Lubrication Enhancement Based on the Flow Mechanism Analysis,” Tribology International, 158(2), pp 106950. doi:10.1016/j.triboint.2021.106950
  • Wang, C., Yan, K., Ge, L., Zhu, Y., Hong, J. (2022), “Design of Groove Structure on Bearing Ring Surface for Lubrication Enhancement,” Journal of Xi’an Jiaotong University, 56(2), pp 74–81.
  • Liu, J., Ni, H., Xu, Z., and Pan, G. (2021), “A Simulation Analysis for Lubricating Characteristics of an Oil-Jet Lubricated Ball Bearing,” Simulation Modelling Practice and Theory, 113, pp 102371. doi:10.1016/j.simpat.2021.102371
  • Liebrecht, J., Si, X., Sauer, B., and Schwarze, H. (2015), “Investigation of Drag and Churning Losses on Tapered Roller Bearings,” Strojniški vestnik-Journal of Mechanical Engineering, 61(6), pp 399–408. doi:10.5545/sv-jme.2015.2490
  • Peterson, W., Russell, T., Sadeghi, F., and Berhan, M. T. (2021), “Experimental and Analytical Investigation of Fluid Drag Losses in Rolling Element Bearings,” Tribology International, 161, pp 107106. doi:10.1016/j.triboint.2021.107106
  • Zhang, J., Ying, L., Bing, X., Min, P., and Qun, C. (2019), “Experimental Study of an Insert and Its Influence on Churning Losses in a High-Speed Electro-Hydrostatic Actuator Pump of an Aircraft,” Chinese Journal of Aeronautics, 32(8), pp 2028–2036. doi:10.1016/j.cja.2018.10.003
  • Zhu, A., Zhang, J., and Chen, Z. (2014), “Design of Electrically Controlled Movable Vane Regulation System of Axial Flow Fan,” Advanced Materials Research, 915, pp 223–227. doi:10.4028/www.scientific.net/AMR.915-916.223
  • Cao, Z., Chen, Y., Su, T., Liu, H., and Zang, L. (2018), “Improvement in DCT Shaft Lubrication through CFD Method,” SAE International Journal of Fuels and Lubricants, 11(3), pp 219–228. doi:10.4271/04-11-03-0011
  • Koshizuka, S. and Oka, Y. (1996), “Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid,” Nuclear Science and Engineering, 123(3), pp 421–434. doi:10.13182/NSE96-A24205
  • Guo, D., Chen, F., Liu, J., Wang, Y., and Wang, X. (2020), “Numerical Modeling of Churning Power Loss of Gear System Based on Moving Particle Method,” Tribology Transactions, 63(1), pp 182–193. doi:10.1080/10402004.2019.1682212
  • Ji, Z., Stanic, M., Hartono, E. A., and Chernoray, V. (2018), “Numerical Simulations of Oil Flow inside a Gearbox by Smoothed Particle Hydrodynamics (SPH) Method,” Tribology International, 127, pp 47–58. doi:10.1016/j.triboint.2018.05.034
  • Wei, C., Wu, W., Gui, P., Zou, T., Yuan, S., and Zhou, J. (2022), “Analysis of Churning Losses Distribution of Hydraulic Pump in Engineering Vehicles Using MPS Method,” Proceedings of the Institution of Mechanical Engineers - Part D: Journal of Automobile Engineering. 09544070221103395.
  • Liu, H., Arfaoui, G., Stanic, M., Montigny, L., Jurkschat, T., Lohner, T., and Stahl, K. (2019), “Numerical Modelling of Oil Distribution and Churning Gear Power Losses of Gearboxes by Smoothed Particle Hydrodynamics,” Proceedings of the Institution of Mechanical Engineers - Part J: Journal of Engineering Tribology, 233(1), pp 74–86. doi:10.1177/1350650118760626
  • Harris, T. A. and Kotzalas, M. N. (2006), Advanced Concepts of Bearing Technology: Rolling Bearing Analysis, 5th Ed., Taylor & Francis: Boca Raton, US.
  • Smagorinsky, J. (1963), “General Circulation Experiments with the Primitive Equations: I. The Basic Experiment,” Monthly Weather Review, 91(3), pp 99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Liu, G. R. and Liu, M. B. (2003), Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific: Singapore.
  • Wu, W., Wei, C., and Yuan, S. (2022), “Numerical Simulation of Ball Bearing Flow Field Using the Moving Particle Semi-Implicit Method,” Engineering Applications of Computational Fluid Mechanics, 16(1), pp 215–228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.