178
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure, Mechanical, and Wear Properties of Al-Alloyed Austempered Ductile Irons

ORCID Icon
Pages 952-962 | Received 16 Jun 2022, Accepted 21 Aug 2022, Published online: 15 Sep 2022

References

  • de A. Vicente, A., Sartori Moreno, J. R., de A. Santos, T. F., Espinosa, D. C. R., and Tenório, J. A. S. (2019), “Nucleation and Growth of Graphite Particles in Ductile Cast Iron.” J. Alloys Compd., 775, 1230. doi:10.1016/j.jallcom.2018.10.136.
  • Haghdadi, B., Bazaz, N., Erfanian-Naziftoosi, H. R., and Kiani-Rashid, A. R. (2012), “Microstructural and Mechanical Characteristics of Al-Alloyed Ductile Iron upon Casting and Annealing.” Int. J. Miner. Metall. Mater., 19, 812. doi:10.1007/s12613-012-0633-z.
  • Kiani-Rashid, A. R., and Edmonds, D. V. (2009), “Microstructural Characteristics of Al-Alloyed Austempered Ductile Irons.” J. Alloys Compd., 477, 391. doi:10.1016/j.jallcom.2008.10.038.
  • Sellamuthu, P., Samuel, D. G. H., Dinakaran, D., Premkumar, V. P., Li, Z., and Seetharaman, S. (2018), “Austempered Ductile Iron (ADI): Influence of Austempering Temperature on Microstructure, Mechanical and Wear Properties and Energy Consumption.” Metals (Basel), 8. doi:10.3390/met8010053.
  • Benam, A. S. (2015), “Effect of Alloying Elements on Austempered Ductile Iron (ADI) Properties and its Process: Review.” China Foundry, 12, 54.
  • Kiani-Rashid, A. R. (2009), “Influence of Austenitising Conditions and Aluminium Content on Microstructure and Properties of Ductile Irons.” J. Alloys Compd. 009, 470, 323. doi:10.1016/j.jallcom.2008.02.070.
  • Shayesteh-Zeraati, A., Naser-Zoshki, H., Kiani-Rashid, A. R., and Yousef-Sani, M. R. (2010), “The Effect of Aluminium Content on Morphology, Size, Volume Fraction, and Number of Graphite Nodules in Ductile Cast Iron.” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 224, 117. doi:10.1243/14644207JMDA302.
  • Shayesteh-Zeraati, A., Naser-Zoshki, H., and Kiani-Rashid, A. R. (2020), “Microstructural and Mechanical Properties (Hardness) Investigations of Al-Alloyed Ductile Cast Iron.” J. Alloys Compd., 500, 129. doi:10.1016/j.jallcom.2010.04.003.
  • Sun, X., Wang, Y., Li, D. Y., and Wang, G. (2013), “Modification of Carbidic Austempered Ductile Iron with Nano Ceria for Improved Mechanical Properties and Abrasive Wear Resistance.” Wear, 301, 116. doi:10.1016/j.wear.2012.12.018.
  • Adebayo, A. O., Oyetunji, A., and Alaneme, K. K. (2020), “Microstructural Characteristics, Mechanical and Wear Behaviour of Aluminium-Alloyed Ductile Irons Subjected to Two Austempering Processes.” Acta Polytech., 60, 185. doi:10.14311/AP.2020.60.0185.
  • Adebayo, A. O., Alaneme, K. K., and Oyetunji, A. (2020), “Corrosion Evaluation of Austempered Aluminium-Alloyed Ductile Irons in Well Water and 0.5M NaCl Solution.” J. Chem. Technol. Metall., 56, 180.
  • Kashani, S. M., and Boutorabi, S. (2009), “As-Cast Acicular Ductile Aluminum Cast Iron.” J. Iron Steel Res. Int., 16, 23. doi:10.1016/S1006-706X(10)60022-2.
  • Rashid, A. R. K., and Edmonds, D. V. (2004), “Oxidation Behaviour of Al-Alloyed Ductile Cast Irons at Elevated Temperature.” Surf. Interface Anal., 36, 1011. doi:10.1002/sia.1825.
  • Kiani-Rashid, A. R., and Edmonds, D. V. (2005), “Carbide Precipitation in the Microstructures of Austempered Ductile Irons Containing 0.48% and 4.88% Al.” Int. J. ISSI, 2, 1.
  • Ibrahim, M. M., Mourad, M. M., Nofal, A. A., and Farahat, A. I. Z. (2017), “Microstructure, Hot Oxidation Resistance and Damping Capacity of Al-Alloyed Cast Iron.” Int. J. Cast Met. Res., 30, 61. doi:10.1080/13640461.2016.1239895.
  • Stefanescu, D. M., Dix, L. P., Ruxanda, R. E., and Piwonka, T. S. (2002), “Tensile Properties of Thin Wall Ductile Iron.” Trans. Am. Foundry Soc., 110, 1.
  • Çelik, G. A., Tzini, M. I. T., Polat, Ş., Atapek, H., and Haidemenopoulos, G. N. (2020), “Thermal and Microstructural Characterization of A Novel Ductile Cast Iron Modified by Aluminum Addition.” Int. J. Miner. Metall. Mater., 27, 190. doi:10.1007/s12613-019-1876-8.
  • Khalvan, M. M., and Divandari, M. (2021), “Microstructure of Spheroidal Graphite Aluminum-Alloyed Cast Irons (SGAACI) Containing up to 7.5 wt% Produced via In-Mold Process.” Int. J. Met., 15, 271. doi:10.1007/s40962-020-00461-y.
  • Sandikoglu, A., and Gecu, R. (2021), “Microstructural, Mechanical and Tribological Characterization of Aluminum-Alloyed Ductile Cast Irons Based on Aluminum Content.” J. Alloys Compd. 2021, 879, 160428. doi:10.1016/j.jallcom.2021.160428.
  • Rousière, D., and France, T. (2013), “Development of Mixed (Ferrito-Ausferritic) Structures for Spheroidal Graphite Irons.” Metall. Sci. Tecnol., 18, 24.
  • Erfanian-Naziftoosi, H. R., Haghdadi, N., and Kiani-Rashid, A. R. (2012), “The Effect of Isothermal Heat Treatment Time on the Microstructure and Properties of 2.11% Al Austempered Ductile Iron.” J. Mater. Eng. Perform., 21, 1785. doi:10.1007/s11665-011-0086-y.
  • Baer, W. (2020), “Chunky Graphite in Ferritic Spheroidal Graphite Cast Iron: Formation, Prevention, Characterization, Impact On Properties: An Overview.” Int. J. Met., 14, 454. doi:10.1007/s40962-019-00363-8.
  • Franzen, D., Weiß, P., Pustal, B., and Bührig-Polaczek, A. (2020), “Modification of Silicon Microsegregation in Solid-Solution-Strengthened Ductile Iron by Alloying with Aluminum.” Int. J. Met., 14, 1105. doi:10.1007/s40962-020-00412-7.
  • Chakrabarty, I. (2017), “Heat Treatment of Cast Irons.” in Comprehensive Materials Finishing, vols. 2–3, 246–287. doi:10.1016/B978-0-12-803581-8.09192-X.
  • Ostwald, W. (1897), “Studies on the Formation and Transformation of Solid Bodies.” Z. Phys. Chem., 22, 289.
  • Sarkar, T., and Pal, T. K. (2018), “Response of Austempering Heat Treatment on Microstructure and Mechanical Property in Different Zones of As-Welded Ductile Iron (DI).” SAE Int. J. Mater. Manuf., 11, 151. doi:10.4271/05-11-02-0016.
  • Bayati, H., and Elliott, R. (1995), “Relationship Between Structure and Mechanical Properties in High Manganese Alloyed Ductile Iron.” Mater. Sci. Technol. (United Kingdom), 11, 284. doi:10.1179/mst.1995.11.3.284.
  • Wang, B., Barber, G. C., Qiu, F., Zou, Q., and Yang, H. (2020), “A Review: Phase Transformation and Wear Mechanisms of Single-Step and Dual-Step Austempered Ductile Irons.” J. Mater. Res. Technol., 9, 1054. doi:10.1016/j.jmrt.2019.10.074.
  • Haribabu, S., Sudha, C., Raju, S., Hajra, R. N., Mythili, R., Jayaraj, J., Murugesan, S., and Saroja, S. (2019), “Effect of Al Addition on the Microstructure and Phase Stability of P91 Ferritic-Martensitic Steel.” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 50, 1421. doi:10.1007/s11661-018-5077-2.
  • Yu Tian, J., Xu, G., Xing Zhou, M., Jiang Hu, H., and Liang Xue, Z. (2019), “Effects of Al Addition on Bainite Transformation and Properties Of High-Strength Carbide-Free Bainitic Steels.” J. Iron Steel Res. Int., 26, 846. doi:10.1007/s42243-019-00253-7.
  • Kučerová, L., and Bystrianský, M. (2017), “Comparison of Thermo-Mechanical Treatment of C-Mn-Si-Nb and C-Mn-Si-Al-Nb TRIP Steels.” Procedia Eng., 207, 1856. doi:10.1016/j.proeng.2017.10.951.
  • Ibrahim, M. M., Nofal, A., and Mourad, M. M. (2017), “Microstructure and Hot Oxidation Resistance of SiMo Ductile Cast Irons Containing Si-Mo-Al.” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 48, 1149. doi:10.1007/s11663-016-0871-y.
  • Rana, R., and Liu, C. (2013), “Thermoelectric Power in Low-Density Interstitial-Free Iron-Aluminium Alloys.” Philos. Mag. Lett., 93, 502. doi:10.1080/09500839.2013.813981.
  • Sina, H., Corneliusson, J., Turba, K., and Iyengar, S. (2015), “A Study on the Formation of Iron Aluminide (FeAl) from Elemental Powders.” J. Alloys Compd., 636, 261. doi:10.1016/j.jallcom.2015.02.132.
  • Srivatsan, T. S., and Annigeri, R. (2000), “The Quasi-Static and Cyclic Fatigue Fracture Behavior of 2014 Aluminum Alloy Metal-Matrix Composites.” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 31, 959. doi:10.1007/s11661-000-0038-x.
  • Stott, F. H. (2002), “High-Temperature Sliding Wear of Metals.” Tribol. Int., 35, 489. doi:10.1016/S0301-679X(02)00041-5.
  • Okonkwo, P. C., Kelly, G., Rolfe, B. F., and Pereira, M. P. (2016), “The Effect of Sliding Speed on the Wear of Steel-Tool Steel Pairs.” Tribol. Int. 206, 97, 218. doi:10.1016/j.triboint.2016.01.030.
  • Kakaš, D., Škorić, B., Mitrović, S., Babić, M., Terek, P., Miletić, A., and Vilotić, M. (2009), “Influence of Load and Sliding Speed on Friction Coefficient of IBAD Deposited TiN.” Tribol. Ind., 31, 3.
  • Ma, X., Liu, R., and Li, D. Y. (2000), “Abrasive Wear Behavior of D2 tool Steel with Respect to Load and Sliding Speed under Dry Sand/Rubber Wheel Abrasion Condition.” Wear, 241, 79. doi:10.1016/S0043-1648(00)00351-3.
  • Gecü, R., and Karaaslan, A. (2002), “Volume Fraction Effect of Stainless Steel on Microstructure, Interface, Corrosion and Wear Behavior Of Stainless Steel/Aluminum Bimetal Composites.” Mater. Chem. Phys., 284, 126068. doi:10.1016/j.matchemphys.2022.126068.
  • Kong, D., and Zhao, B. (2017), “Effects of Loads on Friction–Wear Properties of HVOF Sprayed NiCrBSi Alloy Coatings by Laser Remelting.” J. Alloys Compd., 705, 700. doi:10.1016/j.jallcom.2017.02.171.
  • Zhang, J., Zhang, N., Zhang, M., Zeng, D., Song, Q., and Lu, L. (2014), “Rolling-Sliding Wear of Austempered Ductile Iron with Different Strength Grades.” Wear, 318, 62. doi:10.1016/j.wear.2014.06.015.
  • Wang, B., Qiu, F., Barber, G. C., Pan, Y., Cui, W., and Wang, R. (2020), “Microstructure, Wear Behavior and Surface Hardening of Austempered Ductile Iron.” J. Mater. Res. Technol., 9, 9838. doi:10.1016/j.jmrt.2020.06.076.
  • Zhang, N., Zhang, J., Lu, L., Zhang, M., Zeng, D., and Song, Q. (2016), “Wear and Friction Behavior of Austempered Ductile Iron as Railway Wheel Material.” Mater. Des., 89, 815. doi:10.1016/j.matdes.2015.10.037.
  • Jha, A. K., Prasad, B. K., Modi, O. P., Das, S., and Yegneswaran, A. H. (2003), “Correlating Microstructural Features and Mechanical Properties with Abrasion Resistance of a High Strength Low Alloy Steel.” Wear, 254, 120. doi:10.1016/S0043-1648(02)00309-5.
  • Cui, J., and Chen, L. (2017), “Microstructure and Abrasive Wear Resistance of An Alloyed Ductile Iron Subjected to Deep Cryogenic and Austempering Treatments.” J. Mater. Sci. Technol., 33, 1549. doi:10.1016/j.jmst.2017.08.003.
  • Rajaram, G., Kumaran, S., Srinivasa Rao, T., and Kamaraj, M. (2010), “Studies on High Temperature Wear and its Mechanism of AlSi/Graphite Composite under Dry Sliding Conditions.” Tribol. Int., 43, 2152. doi:10.1016/j.triboint.2010.06.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.