162
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical and Experimental Investigation of Porous Tilting Pad Gas Bearings with Hermetic Squeeze Film Dampers Based on Multilayer Diaphragm Structure

, , , , &
Pages 746-759 | Received 19 Nov 2022, Accepted 13 Apr 2023, Published online: 17 Jul 2023

References

  • Agrawal, G. L. (1990), “Foil Gas Bearings for Turbomachinery (No. 901236)”, SAE Technical Paper.
  • Lubell, D. R., Wade, J. L., Chauhan, N. S., and Nourse, J. G. (2008, January), “Identification and Correction of Rotor Instability in an Oil-Free Gas Turbine.” In Turbo Expo: Power for Land, Sea, and Air Vol. 43154, pp 961–968. doi:10.1115/GT2008-50305
  • Oiwa, N., Masuda, M., Hirayama, T., Matsuoka, T., and Yabe, H. (2012), “Deformation and Flying Height Orbit of Glass Sheets on Aerostatic Porous Bearing Guides,” Tribology International, 48(4), pp 2–7. doi:10.1016/j.triboint.2011.08.014
  • DellaCorte, C., and Bruckner, R. J. (2011), “Remaining Technical Challenges and Future Plans for Oil-Free Turbomachinery,” Journal of Engineering for Gas Turbines and Power, 133(4), p 042502. doi:10.1115/1.4002271.
  • Sneck, H. J. (1968), “A Survey of Gas-Lubricated Porous Bearings.” Journal of Tribology, 90(4), pp 804–809. doi:10.1115/1.3601724
  • Majumdar, B. C. (1975), “Analysis of Externally Pressurized Porous Gas Journal Bearings-I.” Wear, 33(1), pp 25–35. doi:10.1016/0043-1648(75)90221-5
  • Agrawal, G. L. (1997), “Foil Air/Gas Bearing Technology—An Overview”. Paper presented at ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, Orlando, Florida, 78682, V001T04A006. doi:10.1115/97-GT-347
  • Feng, K., Zhao, X., Huo, C., and Zhang, Z. (2016), “Analysis of Novel Hybrid Bump-Metal Mesh Foil Bearings, Tribology International, 103, pp 529–539. doi:10.1016/j.triboint.2016.08.008
  • De Santiago, O., and Solorzano, V. (2013, June), “Experiments with Scaled Foil Bearings in a Test Compressor Rotor.” In Turbo Expo: Power for Land, Sea, and Air, Vol. 55263, p V07AT29A002. American Society of Mechanical Engineers. doi:10.1115/GT2013-94087
  • DellaCorte, C. (2010), “Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbo- machinery,” NASA report NASA/TM-2010- 216924, Cleveland, OH, December.
  • Lee, Y. B., Kim, T. H., Kim, C. H., Lee, N. S., and Choi, D. H. (2004), “Dynamic Characteristics of a Flexible Rotor System Supported by a Viscoelastic Foil Bearing (VEFB)[J],” Tribology International, 37(9), pp 679–687. doi:10.1016/S0301-679X(03)00013-6
  • Sim, K., and Kim, D. (2007), “Design of Flexure Pivot Tilting Pads Gas Bearings for High-Speed Oil-Free Microturbomachinery. Journal of Tribology, 129, pp 112–119. doi:10.1115/1.2372763
  • Ryu, K., and Ashton, Z. (2016), “Bump-Type Foil Bearings and Flexure Pivot Tilting Pad Bearings for Oil-Free Automotive Turbochargers: Highlights in Rotordynamic Performance,” Journal of Engineering for Gas Turbines and Power, 138(4), p 042501. doi:10.1115/1.4031440
  • Heller, S., Shapiro, W., and Decker, O. (1971), “A Porous Hydrostatic Gas Bearing for Use in Miniature Turbomachinery,” ASLE Transactions, 14(2), pp 144–155. doi:10.1080/05698197108983236
  • Lihua, Y., Shemiao, Q., and Lie, Y. (2008), "Analysis on Dynamic Performance of Hydrodynamic Tilting-Pad Gas Bearings Using Partial Derivative Method." ASME Journal of Tribology, 131(1), p 011703. doi:10.1115/1.2991232
  • San Andres, L., Cable, T. A., Zheng, Y., De Santiago, O., and Devitt, D. (2016, June), “Assessment of Porous Type Gas Bearings: Measurements of Bearing Performance and Rotor Vibrations”. In Turbo Expo: Power for Land, Sea, and Air, Vol. 49842, p. V07BT31A031. American Society of Mechanical Engineers. doi:10.1115/GT2016-57876
  • Bolen, R. (2020), “Measurements of the Static and Dynamic Load Performance of a Carbon-Graphite Porous Surface Tilting-Pad Gas Lubricated Journal Bearing.” Master's thesis, Texas A&M University. Available electronically from https://hdl.handle.net/1969.1/192687
  • Jin, X., Xia, P., Liu, Z., Ma, W., Zhang, P., and Liang, Y. (2022), “Thermo-Hybrid Lubrication FSI-CFD Model for the Static Characteristics of Hybrid Porous Tilting Pad Bearings,” Tribology International, 167, p 107397. doi:10.1016/j.triboint.2021.107397
  • Zhu, X. H., and San Andres, L. (2007), “Rotordynamic Performance of Flexure Pivot Hydrostatic Gas Bearings for Oil-Free Turbomachinery,” Journal of Engineering for Gas Turbines and Power, 129(4), pp 1020–1027. doi:10.1115/1.2720518
  • Wu, Y., Deng, M., Feng, K., Guan, H., and Cao, Y. (2020), “Investigations on the Nonlinear Dynamic Characteristics of a Rotor Supported by Porous Tilting Pad Bearings,” Nonlinear Dynamics, 100(3), pp 2265–2286. doi:10.1007/s11071-020-05652-0
  • Rimpel, A., and Kim, D. (2009), “Rotordynamic Performance of Flexure Pivot Tilting Pad Gas Bearings with Vibration Damper,” Journal of Tribology, 131, p 021101. doi:10.1115/1.3063809
  • San Andres, L., Yang, J., and McGowan, R. (2021), “Measurements of Static and Dynamic Load Performance of a 102 mm Carbon-Graphite Porous Surface Tilting-Pad Gas Journal Bearing.” Journal of Engineering for Gas Turbines and Power, 143(11), p 111017. doi:10.1115/1.4051965
  • Wu, Y., An, L., Feng, K., Cao, Y., and Guan, H. (2022), “Experimental and Theoretical Investigation on Rotodynamic Characterization of Hybrid Porous Tilting Pad Bearings,” Mechanical Systems and Signal Processing, 164, p 108245. doi:10.1016/j.ymssp.2021.108245
  • Ertas, B. H. (2009), “Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers,” ASME Journal of Engineering for Gas Turbines and Power Power, 131(2), p. 022503.
  • Feng K., Wu, Y., Liu, W., Zhao, X., and Li, W. (2018), Theoretical investigation on porous tilting pad bearings considering tilting pad motion and porous material restriction. Precision Engineering, S0141635917305238. doi:10.1016/j.precisioneng.2018.02.010
  • Ertas, B. H, and Delgado, A. (2018), “Hermetically Sealed Squeeze Film Damper for Operation in Oil-Free Environments," ASME Journal of Engineering for Gas Turbines and Power Power, 141(2), p. 022503.
  • Vance, J. M., and Royal, A. C. (1975). High-speed rotor dynamics-An assessment of current technology for small turboshaft engines. Journal of Aircraft, 12(4), 295–305. doi:10.2514/3.44447
  • Memmott, E. A. (1992), “Stability of Centrifugal Compressors by Applications of Tilt Pad Seals, Damper Bearings, and Shunt Holes,” IMechE Fifth International Conference on Vibrations in Rotating Machinery, Bath, UK, Sept. 7-10, p. 99–106.
  • Della Pietra, L., and Adiletta, G. (2002), The squeeze film damper over four decades of investigations. Part I: Characteristics and operating features. The Shock and Vibration Digest, 34(1), 3–26.
  • Kandasamy, J., Jaiswal, B. L., Sarasu, P., Sivaperumal, S., Babu, D., and Kumar, A. (2014, December), Experimental investigation of squeeze film damper characteristics at high speed rotor configurations. In Gas Turbine India Conference (Vol. 49644, p. V001T07A003). American Society of Mechanical Engineers. doi:10.1115/GTINDIA2014-8186
  • Adiletta, G., and Della Pietra, L. (2002), The squeeze film damper over four decades of investigations. Part II: Rotordynamic analyses with rigid and flexible rotors. The Shock and vibration digest, 34(2), 97–126.
  • Diaz, S., and San Andres, L. (2001), A model for squeeze film dampers operating with air entrainment and validation with experiments. J. Trib., 123(1), 125–133. doi:10.1115/1.1330742
  • Ertas, B. (2019), Compliant hybrid gas bearing using integral hermetically sealed squeeze film dampers. Journal of Engineering for Gas Turbines and Power, 141(10). doi:10.1115/1.4044644
  • Diaz, S., and San Andres, L. (September 19, 2000), "A Model for Squeeze Film Dampers Operating With Air Entrainment and Validation With Experiments ." ASME. J. Tribol. January 2001; 123(1): 125–133. doi:10.1115/1.1330742
  • Otsu, Y., Miyatake, M., and Yoshimoto, S. (2011), Dynamic characteristics of aerostatic porous journal bearings with a surface-restricted layer. J Tribol 133(1):10.
  • Makris, N. (1992), Theoretical and experimental investigation of viscous dampers in applications of seismic and vibration isolation. (Doctoral dissertation, State University of New York at Buffalo.).
  • Xu, Z. D., Wang, D. X., and Shi, C. F. (2011), Model, tests and application design for viscoelastic dampers. Journal of Vibration and Control, 17(9),1359–1370. doi:10.1177/1077546310373617
  • Ertas, B. H, and Gary, K. (2021, June), Frequency Dependancy of Dynamic Force Coefficients for Hermetic Squeeze Film Dampers Utilizing Fluid-Bounding Flexible Structures. In Turbo Expo: Power for Land, Sea, and Air (Vol. 85024, p. V09AT24A020). American Society of Mechanical Engineers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.