98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An Experimental Investigation on the Lubrication Performance of Water-Based Nanolubricant With TiO2 as Nanoadditive

, , , , , , , & show all
Pages 943-952 | Received 15 Feb 2023, Accepted 09 Jul 2023, Published online: 01 Aug 2023

References

  • Huang, S., Wu, H., Jiang, Z., et al. (2021), “Water-Based Nanosuspensions: Formulation, Tribological Property, Lubrication Mechanism, and Applications,” Journal of Manufacturing Processes, 71, pp 625–644. doi:10.1016/j.jmapro.2021.10.002
  • Jason, J., Geok, H., Heng, T., et al. (2020), “A Study on the Tribological Performance of Nanolubricants,” Processes, 8(11), p 1372. doi:10.3390/pr8111372
  • Yang, G., Zhang, Z., Zhang, S., et al. (2013), “Preparation and Characterization of Copper Nanoparticles Surface-Capped by Alkanethiols,” Surface and Interface Analysis, 45(11–12), pp 1695–1701. doi:10.1002/sia.5309
  • Borda, F., Oliveira, S., Lazaro, L., et al. (2018), “Experimental Investigation of the Tribological Behavior of Lubricants With Additive Containing Copper Nanoparticles,” Tribology International, 117, pp 52–58.
  • Chou, R., Hernández, A., Cabello, J., et al. (2010), “Tribological Behavior of Polyalphaolefin With the Addition of Nickel Nanoparticles,” Tribology International, 43(12), pp 2327–2332. doi:10.1016/j.triboint.2010.08.006
  • Meng, Y., Sun, J., He, J., et al. (2020), “Recycling Prospect and Sustainable Lubrication Mechanism of Water-Based MoS2 Nano-Lubricant for Steel Cold Rolling Process,” Journal of Cleaner Production, 277, p 123991.
  • Kang, X., Wang, B., Zhu, L., et al. (2008), “Synthesis and Tribological Property Study of Oleic Acid-Modified Copper Sulfide Nanoparticles,” Wear, 265(1–2), pp 150–154. doi:10.1016/j.wear.2007.09.009
  • Kong, N., Zhang, J., Zhang, J., et al. (2020), “Chemical- and Mechanical-Induced Lubrication Mechanisms During Hot Rolling of Titanium Alloys Using a Mixed Graphene-Incorporating Lubricant,” Nanomaterials (Basel), 10(4), p 665. doi:10.3390/nano10040665
  • Mirzaamiri, R., Akbarzadeh, S., Ziaei-Rad, S., et al. (2021), “Molecular Dynamics Simulation and Experimental Investigation of Tribological Behavior of Nanodiamonds in Aqueous Suspensions,” Tribology International, 156, p 106838. doi:10.1016/j.triboint.2020.106838
  • Meng, W., Sun, J., Wang, C., et al. (2020), “pH‐Dependent Lubrication Mechanism of Graphene Oxide Aqueous Lubricants on the Strip Surface During Cold Rolling,” Surface and Interface Analysis, 53(4), pp 406–417. doi:10.1002/sia.6928
  • Dai, W., Kheireddin, B., Gao, H., et al. (2016), “Roles of Nanoparticles in Oil Lubrication,” Tribology International, 102, pp 88–98. doi:10.1016/j.triboint.2016.05.020
  • Xie, H., Wei, Y., Jiang, B., et al. (2021), “Tribological Properties of Carbon Nanotube/SiO2 Combinations as Water-Based Lubricant Additives for Magnesium Alloy,” Journal of Materials Research and Technology, 12, pp 138–149. doi:10.1016/j.jmrt.2021.02.079
  • He, A., Huang, S., Yun, J., et al. (2017), “Tribological Performance and Lubrication Mechanism of Alumina Nanoparticle Water-Based Suspensions in Ball-on-Three-Plate Testing,” Tribology Letters, 65(2), p 65. doi:10.1007/s11249-017-0823-y
  • Bao, Y., Sun, J., and Kong, L. (2017), “Effects of Nano-SiO2 as Water-Based Lubricant Additive on Surface Qualities of Strips After Hot Rolling,” Tribology International, 114, pp 257–263. doi:10.1016/j.triboint.2017.04.026
  • Bao, Y., Sun, J., and Kong, L. (2017), “Tribological Properties and Lubricating Mechanism of SiO2 Nanoparticles in Water-Based Fluid,” IOP Conference Series: Materials Science and Engineering, 182, pp 20–24. doi:10.1088/1757-899X/182/1/012025
  • Alves, S., Mello, V., Faria, E., et al. (2016), “Nanolubricants Developed From Tiny CuO Nanoparticles,” Tribology International, 100, pp 263–271. doi:10.1016/j.triboint.2016.01.050
  • Bhaumik, S., Maggirwar, R., Datta, S., et al. (2018), “Analyses of Anti-Wear and Extreme Pressure Properties of Castor Oil With Zinc Oxide Nano Friction Modifiers,” Applied Surface Science, 2018, 449, pp 277–286. doi:10.1016/j.apsusc.2017.12.131
  • Wu, H., Zhao, J., Xia, W., et al. (2017), “A Study of the Tribological Behaviour of TiO2 Nano-Additive Water-Based Lubricants,” Tribology International, 109, pp 398–408. doi:10.1016/j.triboint.2017.01.013
  • Wu, H., Zhao, J., Xia, W., et al. (2017), “Analysis of TiO2 Nano-Additive Water-Based Lubricants in Hot Rolling of Microalloyed Steel,” Journal of Manufacturing Processes, 27, pp 26–36. doi:10.1016/j.jmapro.2017.03.011
  • Wu, H., Zhao, J., Xia, W., et al. (2018), “Friction and Wear Characteristics of TiO2 Nano-Additive Water-Based Lubricant on Ferritic Stainless Steel,” Tribology International, 117, pp 24–38. doi:10.1016/j.triboint.2017.08.011
  • Wu, H., Zhao, J., Xia, W., et al. (2019), “Effect of Water-Based Nanolubricant Containing Nano-TiO2 on Friction and Wear Behaviour of Chrome Steel at Ambient and Elevated Temperatures,” Wear, 426–427, pp 792–804. doi:10.1016/j.wear.2018.11.023
  • Xia, W., Zhao, J., Wu, H., et al. (2018), “Analysis of Oil-in-Water Based Nanolubricants With Varying Mass Fractions of Oil and TiO2 Nanoparticles,” Wear, 396–397, pp 162–171. doi:10.1016/j.wear.2017.02.031
  • Xia, W., Zhao, J., Wu, H., et al. (2017), “Effects of Oil-in-Water Based Nanolubricant Containing TiO2 Nanoparticles In Hot Rolling of 304 Stainless Steel,” Journal of Materials Processing Technology, 262, pp 149–156. doi:10.1016/j.jmatprotec.2018.06.020
  • Xia, W., Zhao, J., Wu, H., et al. (2017), “Study on Growth Behaviour of Oxide Scale and Its Effects on Tribological Property of Nano-TiO2 Additive Oil-in-Water Lubricant,” Wear, 376–377, pp 792–802. doi:10.1016/j.wear.2017.01.069
  • Xia, W., Zhao, J., Wu, H., et al. (2017), “Effects of Oil-in-Water Based Nanolubricant Containing TiO2 Nanoparticles on the Tribological Behaviour of Oxidised High-Speed Steel,” Tribology International, 110, pp 77–85. doi:10.1016/j.triboint.2017.02.013
  • Kong, L., Sun, J., Bao, Y., et al. (2017), “Effect of TiO2 Nanoparticles on Wettability and Tribological Performance of Aqueous Suspension,” Wear, 376–377, pp 786–791. doi:10.1016/j.wear.2017.01.064
  • Kong, L., Sun, J., Bao, Y., et al. (2017), “Preparation, Characterization and Tribological Mechanism of Nanofluids,” RSC Advances, 7(21), pp 12599–12609. doi:10.1039/C6RA28243A
  • Yang, L., Du, K., Niu, X., et al. (2011), “An Experimental and Theoretical Study of the Influence of Surfactant on the Preparation and Stability of Ammonia–Water Nanofluids,” International Journal of Refrigeration, 34(8), pp 1741–1748. doi:10.1016/j.ijrefrig.2011.06.007
  • Xia, W., Zhao, J., Wu, H., et al. (2016), “Effects of Nano-TiO2 Additive in Oil-in-Water Lubricant on Contact Angle and Antiscratch Behavior,” Tribology Transactions, 60(2), pp 362–372. doi:10.1080/10402004.2016.1168900
  • Kong, L., Sun, J., Bao, Y., et al. (2016), “Research on the Physicochemical and Tribological Properties of Nano-TiO2 in the Aqueous Rolling Liquid,” Tribology—Materials, Surfaces & Interfaces, 10(4), pp 172–177. doi:10.1080/17515831.2016.1263029
  • Saffari, H., Soltani, R., Alaei, M., et al. (2018), “Tribological Properties of Water-Based Drilling Fluids With Borate Nanoparticles as Lubricant Additives,” Journal of Petroleum Science and Engineering, 171, pp 253–259. doi:10.1016/j.petrol.2018.07.049
  • Liu, G., Li, X., Qin, B., et al. (2004), “Investigation of the Mending Effect and Mechanism of Copper Nano-Particles on a Tribologically Stressed Surface,” Tribology Letters, 17, pp 961–966. doi:10.1007/s11249-004-8109-6
  • Ginzburg, B., Shibaev, L., Kireenko, O., et al. (2002), “Antiwear Effect of Fullerene C60 Additives to Lubricating Oils,” Russian Journal of Applied Chemistry, 75, pp 1330–1335. doi:10.1023/A:1020929515246
  • Zhang, Q., Jiang, Z., Wei, D., et al. (2013), “Interface Adhesion During Sliding Wear in Cast Iron After Hot Deformation,” Wear, 301, pp 598–607. doi:10.1016/j.wear.2012.11.027
  • Xu, T., Zhao, J., and Xu, K. (1996), “The Ball-Bearing Effect of Diamond Nanoparticles as an Oil Additive,” Journal of Physics D: Applied Physics, 29, p 2932.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.