97
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolution of Fretting-Induced Cracks and Delamination Wear on Alloy 690 Steam Generator Tubes During Mixed Fretting Regime in Air at Room Temperature

, , , &
Pages 1004-1018 | Received 08 Mar 2023, Accepted 03 Sep 2023, Published online: 21 Sep 2023

References

  • Stachowiak, G. W., and Batchelor, A. W. (2013), Engineering Tribology, Butterworth-Heinemann.
  • Kang, K. S., and Kupca, L. (1999), “Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: Steam Generators,” Tech. Rep. TECDOC-1668, IAEA.
  • Electric Power Research Institute (1994), Steam Generator Reference Book, TR-103824s-V1 R1, EPRI.
  • Hassan, M. (2017), “Flow-Induced Vibrations in Nuclear Steam Generators.” In Steam Generators for Nuclear Power Plants, pp 405–434. Woodhead Publishing.
  • Clark, R. A., and Kurtz, R. J. (1988), „Compendium and Comparison of International Practice for Plugging, Repair and Inspection of Steam Generator Tubing” (No. NUREG/CR-5016; PNL-6341), Pacific Northwest Lab., Richland, WA.
  • Dutta, R. S. (2009), “Corrosion Aspects of Ni–Cr–Fe Based and Ni–Cu Based Steam Generator Tube Materials,” Journal of Nuclear Materials, 393(2), pp 343–349. doi:10.1016/j.jnucmat.2009.06.020
  • Marcel, C. P., Furci, H. F., Delmastro, D. F., and Masson, V. P. (2013), “Phenomenology Involved in Self-Pressurized, Natural Circulation, Low Thermo-Dynamic Quality, Nuclear Reactors: The Thermal–Hydraulics of the CAREM-25 Reactor,” Nuclear Engineering and Design, 254, pp 218–227. doi:10.1016/j.nucengdes.2012.09.005
  • Cummins, W. E., and Matzie, R. (2018), “DESIGN EVOLUtion of PWRs: Shippingport to Generation III+,” Progress in Nuclear Energy, 102, pp 9–37. doi:10.1016/j.pnucene.2017.08.008
  • Allen, T., Busby, J., Meyer, M., and Petti, D. (2010), “Materials Challenges for Nuclear Systems,” Materials Today, 13(12), pp 14–23. doi:10.1016/S1369-7021(10)70220-0
  • Zhu, M. H., and Zhou, Z. R. (2011), “On the Mechanisms of Various Fretting Wear Modes,” Tribology International, 44(11), pp 1378–1388. doi:10.1016/j.triboint.2011.02.010
  • Zhou, Z. R., and Vincent, L. (1995), “Mixed Fretting Regime,” Wear, 181, pp 531–536. doi:10.1016/0043-1648(95)90168-X
  • Soria, S. R., Tolley, A., and Yawny, A. (2019), “Running Condition and Material Response Fretting Maps of Incoloy 800 Steam Generator Tubes Against AISI 304L Pads in Air and Room Temperature,” Tribology International, 135, pp 408–420. doi:10.1016/j.triboint.2019.03.027
  • Fouvry, S., Kapsa, P., and Vincent, L. (1996), “Quantification of Fretting Damage,” Wear, 200(1–2), pp 186–205. doi:10.1016/S0043-1648(96)07306-1
  • Sauger, E., Ponsonnet, L., Martin, J. M., and Vincent, L. (2000), “Study of the Tribologically Transformed Structure Created During Fretting Tests,” Tribology International, 33(11), pp 743–750. doi:10.1016/S0301-679X(00)00088-8
  • Xin, L., Yang, B. B., Wang, Z. H., Li, J., Lu, Y. H., and Shoji, T. (2016), “Microstructural Evolution of Subsurface on Inconel 690TT Alloy Subjected to Fretting Wear at Elevated Temperature,” Materials & Design, 104, pp 152–161. doi:10.1016/j.matdes.2016.05.030
  • Xin, L., Wang, Z., Li, J., Lu, Y., and Shoji, T. (2016), “Microstructural Characterization of Subsurface Caused by Fretting Wear of Inconel 690TT Alloy,” Materials Characterization, 115, pp 32–38. doi:10.1016/j.matchar.2016.03.010
  • Li, J., Lu, Y. H., Xin, L., and Shoji, T. (2018), “The Subsurface Damage Mechanism of Inconel 690 During Fretting Wear in Pure Water,” Tribology International, 117, pp 152–161. doi:10.1016/j.triboint.2017.08.024
  • Xin, L., Huang, Q., Han, Y., Ji, H., Lu, Y., and Shoji, T. (2020), “Insights into the Fatigue Cracking of Alloy 690TT Subjected to Fretting Wear Under Partial Slip Conditions,” Materials Characterization, 159, p 110040. doi:10.1016/j.matchar.2019.110040
  • Li, J., Ma, M., Lu, Y. H., and Xin, L. (2016), “Evolution of Wear Damage in Inconel 600 Alloy Due to Fretting Against Type 304 Stainless Steel,” Wear, 346, pp 15–21. doi:10.1016/j.wear.2015.10.011
  • Garcin, S., Fouvry, S., and Heredia, S. (2015), “A FEM Fretting Map Modeling: Effect of Surface Wear on Crack Nucleation,” Wear, 330, pp 145–159. doi:10.1016/j.wear.2015.01.013
  • Llavori, I., Zabala, A., Urchegui, M. A., Tato, W., and Gómez, X. (2019), “A Coupled Crack Initiation and Propagation Numerical Procedure for Combined Fretting Wear and Fretting Fatigue Lifetime Assessment,” Theoretical and Applied Fracture Mechanics, 101, pp 294–305. doi:10.1016/j.tafmec.2019.03.005
  • Soria, S. R., Claramonte, S., and Yawny, A. (2021), “Evolution of Fretting Wear With the Number of Cycles on Inconel 690 Steam Generator Tubes Against AISI 420 Steel Under Gross Slip Conditions,” Tribology International, 155, p 106803. doi:10.1016/j.triboint.2020.106803
  • Neu, R. W. (2011), “Progress in Standardization of Fretting Fatigue Terminology and Testing,” Tribology International, 44, pp 1371–1377. doi:10.1016/j.triboint.2010.12.001
  • ASTM E2789-10, Standard Guide for Fretting Fatigue Testing, ASTM International, 2010.
  • ASTM E112-13, Standard Test Methods for Determining Average Grain Size, ASTM International, 2013.
  • ASME SB-163, Standard Specification for Seamless Nickel and Nickel Alloy Condenser and Heat-Exchanger Tubes, ASME, New York, 2010.
  • Bergant, M. A., Yawny, A. A., and Ipiña, J. E. P. (2017), “J-Resistance Curves for Inconel 690 and Incoloy 800 Nuclear Steam Generators Tubes at Room Temperature and at 300° C,” Journal of Nuclear Materials, 486, pp 298–307. doi:10.1016/j.jnucmat.2017.01.040
  • ASTM E8/E8M-13, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, 2013.
  • ASTM A213-13, Standard Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes, ASTM International, 2013.
  • Soria, S. R., Callisaya, C. E., Soul, H., Claramonte, S., and Yawny, A. (2019), “Fretting Damage of Ni-Rich Ultrafine Grained NiTi Superelastic Wires,” Journal of the Mechanical Behavior of Biomedical Materials, 90, pp 655–664. doi:10.1016/j.jmbbm.2018.11.019
  • Liao, J., Tan, J., Wu, X., Tang, L., Qian, H., and Xie, Y. (2018), “Effects of Normal Load on Fretting Corrosion Fatigue of Alloy 690 in 285° C Pure Water,” Corrosion Science, 141, pp 158–167. doi:10.1016/j.corsci.2018.07.010
  • Rymuza, Z. (1996), “Energy Concept of the Coefficient of Friction,” Wear, 199(2), pp 187–196. doi:10.1016/0043-1648(95)06895-3
  • Fouvry, S., Duó, P., and Perruchaut, P. (2004), “A Quantitative Approach of Ti–6Al–4V Fretting Damage: Friction, Wear and Crack Nucleation,” Wear, 257(9–10), pp 916–929. doi:10.1016/j.wear.2004.05.011
  • Fleury, R. M. N., Paynter, R. J. H., and Nowell, D. (2017), “Estimation of the Coefficient of Friction in Partial Slip Contacts Between Contacting Nickel Superalloys,” Tribology International, 108, pp 156–163. doi:10.1016/j.triboint.2016.09.039
  • https://www.3ds.com/products-services/simulia/products/abaqus
  • Maas, S. A., Ellis, B. J., Rawlins, D. S., and Weiss, J. A. (2016), “Finite Element Simulation of Articular Contact Mechanics With Quadratic Tetrahedral Elements,” Journal of Biomechanics, 49(5), pp 659–667. doi:10.1016/j.jbiomech.2016.01.024
  • Berthier, Y., Vincent, L., and Godet, M. (1988), “Velocity Accommodation in Fretting,” Wear, 125(1–2), pp 25–38. doi:10.1016/0043-1648(88)90191-3
  • Stott, F. H., and Wood, G. C. (1978), “The Influence of Oxides on the Friction and Wear of Alloys,” Tribology International, 11(4), pp 211–218. doi:10.1016/0301-679X(78)90178-0
  • Elleuch, K., Proudhon, H., Meunier, C., and Fouvry, S. (2006), “Development of a Contact Compliance Method to Detect the Crack Propagation Under Fretting,” Tribology International, 39(10), pp 1262–1270. doi:10.1016/j.triboint.2006.02.015
  • Taljat, B., and Pharr, G. M. (2004), “Development of Pile-Up During Spherical Indentation of Elastic–Plastic Solids,” International Journal of Solids and Structures, 41(14), pp 3891–3904. doi:10.1016/j.ijsolstr.2004.02.033
  • Bhatti, N. A., and Wahab, M. A. (2018), “Fretting Fatigue Crack Nucleation: A Review,” Tribology International, 121, pp 121–138. doi:10.1016/j.triboint.2018.01.029
  • Kolodziejczyk, T., Fouvry, S., and Morales-Espejel, G. (2007), “Fretting Generated by the Vibrations in Ball Bearings in Dry and Oil-Bath Lubricated Contact.” In Proceedings from 1st International Conference on Artificial Intelligence for Industrial Applications.
  • Eriten, M., Polycarpou, A. A., and Bergman, L. (2010), “Physics-Based Modeling for Partial Slip Behavior of Spherical Contacts,” International Journal of Solids and Structures, 47(18–19), pp 2554–2567. doi:10.1016/j.ijsolstr.2010.05.017
  • Leidner, M., Schmidt, H., and Myers, M. (2009, September), “A Numerical Method to Predict the Stick/Slip Zone of Contacting, Nonconforming, Layered Rough Surfaces Subjected to Shear Traction.” In 2009 Proceedings of the 55th IEEE Holm Conference on Electrical Contacts, pp 36–41. IEEE. doi:10.1109/HOLM.2009.5284424
  • Fouvry, S., Arnaud, P., Mignot, A., and Neubauer, P. (2017), “Contact Size, Frequency and Cyclic Normal Force Effects on Ti–6Al–4V Fretting Wear Processes: An Approach Combining Friction Power and Contact Oxygenation,” Tribology International, 113, pp 460–473. doi:10.1016/j.triboint.2016.12.049
  • Waterhouse R. B. (1977), “The Role of Adhesion and Delamination in the Fretting Wear of Metallic Materials,” Wear, 45, pp 355–364. doi:10.1016/0043-1648(77)90026-6
  • Nowell, D., Hills, D. A., and Dai, D. N. (1994), “Energy Dissipation and Crack Initiation in Fretting Fatigue.” In Tribology Series, Vol. 27, pp 389–396. Elsevier.
  • Wang, Q., and Zhu, D. (2013), “Hertz Theory: Contact of Spherical Surface.” In Encyclopedia of Tribology, pp 1654–1662. Springer.
  • Vander Voort, G. F. (2002), “Microindentation Hardness Testing.” In ASM Handbook, Vol. 8, pp 221–231. ASM.
  • ASTM E384-17, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.