114
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Research on the Influence of Floating Brake Pad Structure on the Friction Interface Performance of Disk Brake

, ORCID Icon, , , , & show all
Pages 502-521 | Received 06 Mar 2024, Accepted 14 May 2024, Published online: 10 Jun 2024

References

  • Wang, Q., Wang, Z., Mo, J., Gebreyohanes, M. Y., Wang, R., and Allen, P. (2022), “A Novel Dynamics Model of a Trailer Bogie Brake System and Its Application in Stability Analysis,” Mechanical Systems and Signal Processing, 172, 108966. doi:10.1016/j.ymssp.2022.108966
  • Liu, Y., Wu, Y., Ma, Y., Gao, W., Yang, G., Fu, H., Xi, N., and Chen, H. (2019), “High Temperature Wear Performance of Laser Cladding Co06 Coating on High-Speed Train Brake Disc,” Applied Surface Science, 481, pp 761–766. doi:10.1016/j.apsusc.2019.02.235
  • Kim, S. W., Kim, Y. G., and Kim, K. H. (2007), “A Study on the Establishment of Disc Braking Force Pattern to Reduce the Wear Mass of Pad.” Proceedings of the KSR Conference. The Korean Society for Railway, Jeju Island, pp 786–791.
  • Li, J., Lin, H., and Li, H. (2006), “Simulation Analysis on the Alloy-Forge Steel Brake Disc Temperature Field for a High-Speed Train,” Journal of the China Railway Society, 28, pp 45–48.
  • Wang, Y. Y. (2005), “G. 3-D Transient Temperature Field and Stress Field Simulation of Brake Discs,”Journal of Mechanical Science and Technology, 24, 12571260.
  • Lu, C., Yin, J., Mo, J., and Wang, J. (2022), “Accumulated Wear Degradation Prediction of Railway Friction Block Considering the Evolution of Contact Status,” Wear, 494, 204251. doi:10.1016/j.wear.2022.204251
  • Yin, J., Lu, C., and Mo, J. (2024), “Comprehensive Modeling Strategy for Thermo-Mechanical Tribological Behavior Analysis of Railway Vehicle Disc Brake System,” Friction, 12, pp 74–94. doi:10.1007/s40544-023-0735-9
  • Wang, Q., Wang, Z., Mo, J., and Zhou, Z. (2023), “Modelling and Stability Analysis of a High-Speed Train Braking System,” International Journal of Mechanical Sciences, 250, 108315. doi:10.1016/j.ijmecsci.2023.108315
  • Lin, D., Yan, X., Chen, B., She, N., Ding, Y., and Dong, S. (2023), “Analysis of Key Brake Pad Parameters on Brake System Stability,” Industrial Lubrication and Tribology, 75, pp 1089–1104. doi:10.1108/ILT-06-2023-0176
  • Grzes, P., Oliferuk, W., Adamowicz, A., Kochanowski, K., Wasilewski, P., and Yevtushenko, A. A. (2016), “The Numerical-Experimental Scheme for the Analysis of Temperature Field in a Pad-Disc Braking System of a Railway Vehicle at Single Braking,” International Communications in Heat and Mass Transfer, 75, pp 1–6. doi:10.1016/j.icheatmasstransfer.2016.03.017
  • Afzal, A., and Abdul Mujeebu, M. (2019), “Thermo-Mechanical and Structural Performances of Automobile Disc Brakes: A Review of Numerical and Experimental Studies,” Archives of Computational Methods in Engineering, 26, pp 1489–1513. doi:10.1007/s11831-018-9279-y
  • Belhocine, A. (2017), “FE Prediction of Thermal Performance and Stresses in an Automotive Disc Brake System,” The International Journal of Advanced Manufacturing Technology, 89, pp 3563–3578. doi:10.1007/s00170-016-9357-y
  • Ay, C., and Demir, A. (2022), “Investigation of Thermo-Mechanical Behavior in Brake Disc–Pad Couple Using the Finite Element Method,” Surface Review and Letters, 29, 2250117. doi:10.1142/S0218625X22501177
  • Tang, Y., and Yuan, Z. (2022), “Nonuniform Frictional Heat Effect on Thermal Stress in a Railway Brake Disc,” Heat Transfer Research, 53, pp 1–14. doi:10.1615/HeatTransRes.2021040340
  • Shpenev, A. G. (2021), “The Influence of the Thermoelastic Instability on the Wear of Composite Brake Discs,” Journal of Friction and Wear, 42, pp 30–37. doi:10.3103/S1068366621010104
  • Wang, Z., Han, J., Domblesky, J. P., Li, Z., Fan, X., and Liu, X. (2019), “Crack Propagation and Microstructural Transformation on the Friction Surface of a High-Speed Railway Brake Disc,” Wear, 428–429, pp 45–54. doi:10.1016/j.wear.2019.01.124
  • Han, M., Lee, C., Park, T., Park, J. M., and Son, S. M. (2017), “Coupled Thermo-Mechanical Analysis and Shape Optimization for Reducing Uneven Wear of Brake Pads,” International Journal of Automotive Technology, 18, pp 1027–1035. doi:10.1007/s12239-017-0100-y
  • Xiang, Z., Xie, S., Li, S., Zhang, J. K., Wang, Q., Zhu, S., Zhai, C. Z., and Mo, J. L. (2023), “Friction-Induced Vibration and Noise Performance of High-Speed Train Friction Braking under the Evolution of Residual Height of Friction Block,” Tribology International, 187, 108770. doi:10.1016/j.triboint.2023.108770
  • Belhocine, A., and Bouchetara, M. (2013), “Investigation of Temperature and Thermal Stress in Ventilated Disc Brake Based on 3D Thermomechanical Coupling Model,” Ain Shams Engineering Journal, 4, pp 475–483. doi:10.1016/j.asej.2012.08.005
  • Benhassine, N., Haiahem, A., and Bou-Said, B. (2019), “A Comparative Study of the Transient Thermomechanical Behavior of Friction of the Ceramic Brake Discs: Temperature Field Effect,” Journal of Mechanical Science and Technology, 33, pp 233–240. doi:10.1007/s12206-018-1223-4
  • Rouhi Moghanlou, M., and Saeidi Googarchin, H. (2020), “Three-Dimensional Coupled Thermo-Mechanical Analysis for Fatigue Failure of a Heavy Vehicle Brake Disk: Simulation of Braking and Cooling Phases,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234, pp 3145–3163.
  • Söderberg, A., and Andersson, S. (2009), “Simulation of Wear and Contact Pressure Distribution at the Pad-to-Rotor Interface in a Disc Brake Using General Purpose Finite Element Analysis Software,” Wear, 267, pp 2243–2251. doi:10.1016/j.wear.2009.09.004
  • Zhang, S., Yin, J., Liu, Y., Liu, N., Sha, Z., Wang, Y., and Rolfe, B. (2018), “Thermal–Structural Coupling Analysis of Brake Friction Pair Based on the Displacement Gradient Circulation Method,” Advances in Mechanical Engineering, 10, 1687814018773816. doi:10.1177/1687814018773816
  • Wu, Y., Jin, H., Li, Y., Ji, Z., and Hou, S. (2014), “Simulation of Temperature Distribution in Disk Brake Considering a Real Brake Pad Wear,” Tribology Letters, 56, pp 205–213. doi:10.1007/s11249-014-0400-6
  • Bauzin, J. G., and Laraqi, N. (2019), “Three-Dimensional Analytical Calculation of the Temperature in a Brake Disc of a High-Speed Train,” Applied Thermal Engineering, 154, pp 668–675. doi:10.1016/j.applthermaleng.2019.03.112
  • Belhocine, A. (2015), “Numerical Investigation of a Three-Dimensional Disc-Pad Model with and Without Thermal Effects,” Thermal Science, 19, pp 2195–2204. doi:10.2298/TSCI141130072B
  • Peng, T., Yan, Q., Li, G., Zhang, X., Wen, Z., and Jin, X. (2017), “The Braking Behaviors of Cu-Based Metallic Brake Pad for High-Speed Train under Different Initial Braking Speed,” Tribology Letters, 65, pp 1–13. doi:10.1007/s11249-017-0914-9
  • Jiang, L., Jiang, Y., Yu, L., Yang, H., Li, Z., and Ding, Y. (2019), “Thermo-Mechanical Coupling Analyses for Al Alloy Brake Discs with Al2O3-SiC (3D)/Al Alloy Composite Wear-Resisting Surface Layer for High-Speed Trains,” Materials, 12, 3155. doi:10.3390/ma12193155
  • Wang, C., Wang, S., Jin, H., Huo, H., Xu, H., and Chen, Z. (2022), “Thermal-Mechanical Coupling Analysis and Optimization of Mine Hoist Brake Disc,” Advances in Mechanical Engineering, 14, 16878132221106297. doi:10.1177/16878132221106297
  • Hong, H., Kim, G., Lee, H., Kim, J., Lee, D., Kim, M., Suh, M., and Lee, J. (2021), “Optimal Location of Brake Pad for Reduction of Temperature Deviation on Brake Disc during High-Energy Braking,” Journal of Mechanical Science and Technology, 35, pp 1109–1120. doi:10.1007/s12206-021-0224-x
  • Belhocine, A., and Afzal, A. (2022), “Computational Finite Element Analysis of Brake Disc Rotors Employing Different Materials,” Australian Journal of Mechanical Engineering, 20, pp 637–650. doi:10.1080/14484846.2020.1733175
  • Pranta, M. H., Rabbi, M. S., Banik, S. C., Hafez, M. G., and Chu, Y.-M. (2022), “A Computational Study on Structural and Thermal Behavior of Modified Disk Brake Rotors,” Alexandria Engineering Journal, 61, pp 1882–1890. doi:10.1016/j.aej.2021.07.013
  • Sawczuk, W., Merkisz-Guranowska, A., Ulbrich, D., Kowalczyk, J., and Cañás, A.-M. R. (2022), “Investigation and Modelling of the Weight Wear of Friction Pads of a Railway Disc Brake,” Materials, 15, 6312. doi:10.3390/ma15186312
  • Wang, Q., Wang, Z., Mo, J., Zhai, C., Gou, Q., and Zhou, Z. (2023), “Dynamic Response Analysis of a Train Braking System with Time-Varying Coefficient of Friction Excitations,” Mechanical Systems and Signal Processing, 204, 110806. doi:10.1016/j.ymssp.2023.110806
  • Xiang, Z., Chen, W., Mo, J., Liu, Q. A., Fan, Z. Y., and Zhou, Z. R. (2021), “The Effects of the Friction Block Shape on the Tribological and Dynamical Behaviours of High-Speed Train Brakes,” International Journal of Mechanical Sciences, 194, 106184. doi:10.1016/j.ijmecsci.2020.106184
  • Yin, J., Wu, Y., Lu, C., Chen, W., Mo, J. L., and Zhou, Z. R. (2021), “The Influence of Friction Blocks Connection Configuration on High-Speed Railway Brake Systems Performance,” Tribology Letters, 69, pp 122. doi:10.1007/s11249-021-01497-9
  • Friedrich, K., Flöck, J., Váradi, K., et al. (1999), “Numerical and Finite Element Contact and Thermal Analysis of Real Composite-Steel Surfaces in Sliding Contact,” Wear, 225, pp 368–379. doi:10.1016/S0043-1648(98)00367-6
  • Bergman, T. L. (2011), Fundamentals of Heat and Mass Transfer, John Wiley & Sons: New Jersey.
  • Wolff, A., and Kukulski, J. (2019), “Numerical and Experimental Analysis of the Heat Transfer Process in a Railway Disc Brake,”Problemy Kolejnictwa Railway Reports, 185, pp 59–69.
  • Wolff, A. (2010), “A Method to Achieve Comparable Thermal States of Car Brakes during Braking on the Road and on a High-Speed Roll-Stand,” Archives of Transport, 22, pp 259–273. doi:10.2478/v10174-010-0016-z
  • Wolff, A. (2015), “Numerical Analysis of Heat Transfer in Cylinder of a Marine Two-Stroke Engine,” Combust. Engines, 162, pp 849–857.
  • Wolff, A. (2010), “Possibilities to Achieve Assumed Thermal States of Automotive Brakes during Testing on a High-Speed Roll-Stand,” Logistyka, 4, pp 1–8.
  • Zhang, S., Qin, Y., and Yin, Y. (2018), “Research on Transient Heat Transfer Performance of Disc Brakes for Mining Motor Vehicle,” Mathematical Models in Engineering, 4, pp 105–111. doi:10.21595/mme.2018.19738
  • McPhee, A. D., and Johnson, D. A. (2008), “Experimental Heat Transfer and Flow Analysis of a Vented Brake Rotor,” International Journal of Thermal Sciences, 47, pp 458–467. doi:10.1016/j.ijthermalsci.2007.03.006
  • Bilal, M., Sagheer, M., and Hussain, S. (2018), “Numerical Study of Magnetohydrodynamics and Thermal Radiation on Williamson Nanofluid Flow over a Stretching Cylinder with Variable Thermal Conductivity,” Alexandria Engineering Journal, 57, pp 3281–3289. doi:10.1016/j.aej.2017.12.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.