94
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Application of the Hybrid Model to elastohydrodynamic lubrication (EHL) Reference Liquids for Pressure Extrapolation

ORCID Icon
Pages 538-544 | Received 06 Jan 2024, Accepted 22 May 2024, Published online: 12 Jun 2024

References

  • Bair, S., Fernandez, J., Khonsari, M. M., Krupka, I., Qureshi, F., Vergne, P., and Wang, Q. J. (2009), “An Argument for a Change in Elastohydrodynamic Lubrication Philosophy,” Proceedings of the Institution of Mechanical Engineers, 223, pp I–II.
  • Bair, S., Vergne, P., and Marchetti, M. (2002), “The Effect of Shear-Thinning on Film Thickness for Space Lubricants,” Tribology Transactions, 45, pp 330–333. doi:10.1080/10402000208982557
  • Bair, S., Krupka, I., Sperka, P., and Hartl, M. (2013), “Quantitative Elastohydrodynamic Film Thickness of Mechanically Degraded Oil,” Tribology International, 64, pp 33–38. doi:10.1016/j.triboint.2013.02.032
  • Krupka, I., Bair, S., Kumar, P., Khonsari, M. M., and Hartl, M. (2009), “An Experimental Validation of the Recently Discovered Scale Effect in Generalized Newtonian EHL,” Tribology Letters, 33, pp 127–135. doi:10.1007/s11249-008-9397-z
  • Krupka, I., Kumar, P., Bair, S., Khonsari, M. M., and Hartl, M. (2010), “The Effect of Load (Pressure) for Quantitative EHL Film Thickness,” Tribology Letters, 37, pp 613–622. doi:10.1007/s11249-009-9559-7
  • Habchi, W. and Bair, S. (2019), “Is Viscoelasticity of Any Relevance to Quantitative EHL Friction Predictions?,” Tribology International, 135, pp 96–103. doi:10.1016/j.triboint.2019.02.048
  • Bair, S., Habchi, W., Baker, M., and Pallister, D. M. (2017), “Quantitative Elastohydrodynamic Film-Forming for an Oil/Refrigerant System,” Journal of Tribology, 139, 061501. doi:10.1115/1.4036171
  • Habchi, W., Sperka, P., and Bair, S. (2023), “Is Elastohydrodynamic Minimum Film Thickness Truly Governed by Inlet Rheology?,” Tribology Letters, 71, 96. doi:10.1007/s11249-023-01771-y
  • Bingham, E. C. (1922), Fluidity and Plasticity, Volume 2, p 5, McGraw-Hill: New York.
  • Bair, S. S. (2019), High Pressure Rheology for Quantitative Elastohydrodynamics, 2nd Edition, Elsevier: Amsterdam.
  • Floudas, G., Paluch, M., Grzybowski, A., and Ngai, K. (2010), Molecular Dynamics of Glass-Forming Systems: Effects of Pressure, Volume 1, pp 77–78, Springer Science & Business Media: Heidelberg.
  • Houpert, L. (1985), “New Results of Traction Force Calculations in Elastohydrodynamic Contacts,” Journal of Tribology, 107, pp 241–245. doi:10.1115/1.3261033
  • Neupert, T. and Bartel, D. (2023), “Evaluation of Various Shear-Thinning Models for Squalane Using Traction Measurements, TEHD and NEMD Simulations,” Lubricants, 11, 178. doi:10.3390/lubricants11040178
  • Xu, R., Martinie, L., Vergne, P., Joly, L., and Fillot, N. (2023), “An Approach for Quantitative EHD Friction Prediction Based on Rheological Experiments and Molecular Dynamics Simulations,” Tribology Letters, 71, 69. doi:10.1007/s11249-023-01740-5
  • Bair, S. (2019), “The Rheological Assumptions of Classical EHL: What Went Wrong?,” Tribology International, 131, pp 45–50. doi:10.1016/j.triboint.2018.10.020
  • Comuñas, M. J. P., Paredes, X., Gaciño, F. M., Fernández, J., Bazile, J.-P., Boned, C., Daridon, J.-L., Galliero, G., Pauly, J., and Harris, K. R. (2014), “Viscosity Measurements for Squalane at High Pressures to 350 MPa from T=(293.15 to 363.15) K,” The Journal of Chemical Thermodynamics, 69, pp 201–208. doi:10.1016/j.jct.2013.10.001
  • Prentice, I. J., Liu, X., Nerushev, O. A., Balakrishnan, S., Pulham, C. R., and Camp, P. J. (2020), “Experimental and Simulation Study of the High-Pressure Behavior of Squalane and Poly-α-Olefins,” The Journal of Chemical Physics, 152, 074504. doi:10.1063/1.5139723
  • Bair, S. S., Andersson, O., Qureshi, F. S., and Schirru, M. M. (2018), “New EHL Modeling Data for the Reference Liquids Squalane and Squalane Plus Polyisoprene,” Tribology Transactions, 61, pp 247–255. doi:10.1080/10402004.2017.1310339
  • Wingertszahn, P., Schmitt, S., Thielen, S., Oehler, M., Magyar, B., Koch, O., Hasse, H., and Stephan, S. (2023), “Measurement, Modelling, and Application of Lubricant Properties at Extreme Pressures,” Tribologie und Schmierungstechnik, 70, pp 5–12. doi:10.24053/TuS-2023-0017
  • Thoms, E., Grzybowski, A., Pawlus, S., and Paluch, M. (2018), “Breakdown of the Simple Arrhenius Law in the Normal Liquid State,” The Journal of Physical Chemistry Letters, 9, pp 1783–1787. doi:10.1021/acs.jpclett.8b00583
  • Drozd-Rzoska, A., Rzoska, S. J., Roland, C. M., and Imre, A. R. (2008), “On the Pressure Evolution of Dynamic Properties of Supercooled Liquids,” Journal of Physics: Condensed Matter, 20, 244103. doi:10.1088/0953-8984/20/24/244103
  • Paluch, M., Dendzik, Z., and Rzoska, S. J. (1999), “Scaling of High-Pressure Viscosity Data in Low-Molecular-Weight Glass-Forming Liquids,” Physical Review B, 60, pp 2979–2982. doi:10.1103/PhysRevB.60.2979
  • Bair, S. (2020). A discussion of Arana, A., Larrañaga, J., & Ulacia, I. (2019). Partial EHL friction coefficient model to predict power losses in cylindrical gears. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 233 (2) 303–316. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 234(7), pp 1168–1170.
  • Kleinschmidt, R. V., Bradbury, D., and Mark, M. (1953), Viscosity and Density of over Forty Lubricating Fluids of Known Composition at Pressures to 150,000 psi and Temperatures to 425 F, ASME: New York.
  • Bair, S. and Habchi, W. (2023), “The Role of Fragility in Thermal Elastohydrodynamics,” Tribology Letters, 71, 24. doi:10.1007/s11249-023-01696-6
  • Casalini, R. and Roland, C. M. (2007), “Isobaric and Isochoric Properties of Glass-Formers,” Soft Matter under Exogenic Impacts NATO Science Series II, ed. S. J. Rzoska and V. A. Mazur, Volume 242, pp 141–147. Springer: Dordrecht.
  • Casalini, R. and Roland, C. M. (2005), “Scaling of the Supercooled Dynamics and Its Relation to the Pressure Dependences of the Dynamic Crossover and the Fragility of Glass Formers,” Physical Review B, 71, 014210. doi:10.1103/PhysRevB.71.014210
  • Sax, K. J. and Stross, F. H. (1957), “Squalane: A Standard,” Analytical Chemistry, 29, pp 1700–1702. doi:10.1021/ac60131a044
  • Caetano, F. J. P., Fareleira, J. M. N. A., Oliveira, C. M. B. P., and Wakeham, W. A. (2004), “Viscosity of Di-Isodecylphthalate: A Potential Standard of Moderate Viscosity,” International Journal of Thermophysics, 25, pp 1311–1322. doi:10.1007/s10765-004-5740-2
  • Harris, K. R. and Bair, S. (2007), “Temperature and Pressure Dependence of the Viscosity of Diisodecyl Phthalate at Temperatures between (0 and 100) C and at Pressures to 1 GPa,” Journal of Chemical & Engineering Data, 52, pp 272–278. doi:10.1021/je060382+
  • Bair, S. and Yamaguchi, T. (2017), “The Equation of State and the Temperature, Pressure, and Shear Dependence of Viscosity for a Highly Viscous Reference Liquid, Dipentaerythritol Hexaisononanoate,” Journal of Tribology, 139, 011801. doi:10.1115/1.4033050
  • Harris, K. R. (2015), “Temperature and Pressure Dependence of the Viscosities of Krytox GPL102 Oil and Di (Pentaerythritol) Hexa (Isononanoate),” Journal of Chemical & Engineering Data, 60, pp 1510–1519. doi:10.1021/acs.jced.5b00099
  • Wakeham, W. A., Assael, M. J., Avelino, H. M. N. T., Bair, S., Baled, H. O., Bamgbade, B. A., Bazile, J.-P., Caetano, F. J. P., Comuñas, M. J. P., Daridon, J.-L., Diogo, J. C. F., Enick, R. M., Fareleira, J. M. N. A., Fernández, J., Oliveira, M. C., Santos, T. V. M., and Tsolakidou, C. M. (2017), “In Pursuit of a High-Temperature, High-Pressure, High-Viscosity Standard: The Case of Tris (2-Ethylhexyl) Trimellitate,” Journal of Chemical & Engineering Data, 62, pp 2884–2895. doi:10.1021/acs.jced.7b00170
  • Bair, S. (2016), “The Temperature and Pressure Dependence of Viscosity and Volume for Two Reference Liquids,” Lubrication Science, 28, pp 81–95. doi:10.1002/ls.1302
  • Abreu, S. B. E., Avelino, H. M., Caetano, F. J., and Fareleira, J. M. (2010), “Density of Diisodecyl Phthalate at Temperatures from (283.15 to 363.15) K and Pressures from (0.1 to 65) MPa,” Journal of Chemical & Engineering Data, 55, pp 3525–3531. doi:10.1021/je1001413
  • Casalini, R., Bair, S. S., and Roland, C. M. (2016), “Density Scaling and Decoupling in o-Terphenyl, Salol, and Dibutyphthalate,” The Journal of Chemical Physics, 145, pp 064502-1–064502-5. doi:10.1063/1.4960513
  • Avelino, H., Caetano, F. J. P., Diogo, J. C. F., Fareleira, J. M. N. A., Pereira, M. F. V., Santos, F. J. V., Santos, T. V. M., and Wakeham, W. A. (2018), “Density and Rheology of Tris (2-Ethylhexyl) Trimellitate (TOTM),” Journal of Chemical & Engineering Data, 63, pp 459–462. doi:10.1021/acs.jced.7b00939
  • Habchi, W., Sperka, P., and Bair, S. (2023), “The Role of the Glass Transition for EHL Minimum Film Thickness,” Tribology International, 190, 109061. doi:10.1016/j.triboint.2023.109061
  • Gohar, R. and Rahnejat, H. (2012), Fundamentals of Tribology, 2nd Edition, p 90, World Scientific Publishing Company: Hackensack, NJ.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.