568
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Effects of chironomid density and dissolved oxygen on mercury efflux from profundal lake sediment

, &

References

  • Aller RC. 2001. Transport and reaction in the bioirrigated zone: In: Boudreau BP, Jorgensen BB, editors. The benthic boundary layer. Oxford University Press. p. 269–301.
  • Anderson FØ, Jørgensen M, Jensen HS. 2006. The influence of Chironomus plumosus larvae on nutrient fluxes and phosphorus fractions in aluminum treated lake sediment. Water Air Soil Pollut: Focus. 6:101–110.
  • Benoit JM, Shull DH, Harvey RM, Beal SA. 2009. Effect of bioirrigation on sediment–water exchange of methylmercury in Boston Harbor, Massachusetts. Environ Sci Technol. 43:3669–3674.
  • Beutel MW. 2003. Hypolimnetic anoxia and sediment oxygen demand in California drinking water reservoirs. Lake Reserv Manage. 19:208–221.
  • Beutel MW. 2006. Inhibition of ammonia release from anoxic profundal sediments in lakes using hypolimnetic oxygenation. Ecol Eng. 28:271–279.
  • Beutel MW, Dent SR, Reed B, Marshall P, Gebremariam S, Moore BC, Cross B, Shallenberger E. 2014. Effects of hypolimnetic oxygen addition on mercury bioaccumulation in Twin Lakes, Washington, USA. Sci Tot Environ. 496:688–700.
  • Beutel MW, Duvil R, Drury D. 2013. Effect of oxygen, nitrate and aluminum addition on methylmercury efflux from mine-impacted reservoir sediments. SETAC Europe 2013.
  • Beutel MW, Leonard TM, Dent SR, Moore BC. 2008. Effects aerobic and anaerobic conditions on P, N, Fe, Mn and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake. Water Res. 42:1953–1962.
  • Biswas JK, Rana S, Bhakta JN, Jana BB. 2009. Bioturbation potential of chironomid larvae for the sediment-water phosphorus exchange in simulated pond systems of varied nutrient enrichment. Ecol Eng. 35:1444–1453.
  • Chadwick S, Babiarz C, Hurley J, Armstrong D. 2006. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury. Sci Total Environ. 368:177–188.
  • Choe K-Y, Gill GA, Lehman RD, Han S, Heim WA, Coale KH. 2005. Sediment–water exchange of total mercury and monomethylmercury in the San Francisco Bay-Delta. Limnol Oceanogr. 49:1512–1527.
  • Cox SE. 2011. Effects of chironomid density and dissolved oxygen on mercury efflux from profundal lake sediment from Deer Lake, Washington [master's thesis]. [Pullman (WA)]: Washington State University.
  • Dent SR. 2012. Effects of oxygenation on metal cycling in lakes [dissertation]. [Pullman (WA)]: Washington State University.
  • Gill GA, Bloom NS, Cappellino S, Driscoll C, Dobbs C, McShea L, Mason RP, Rudd J. 1999. Sediment-water fluxes of mercury in Lavaca Bay, Texas. Environ Sci Technol. 33:663–669.
  • Hammerschmidt CR, Fitzgerald WF, Lamborg CH, Balcom PH, Visscher PT. 2004. Biogeochemistry of methylmercury in sediments of Long Island Sound. Mar Chem. 90:31–52.
  • Hammerschmidt CR, Fitzgerald WF. 2006. Bioaccumulation and trophic transfer of methylmercury in Long Island Sound. Arch Environ Contam Toxicol. 51:416–424.
  • Hammerschmidt CR, Fitzgerald WF. 2008. Sediment–water exchange of methylmercury determined from shipboard benthic flux chambers. Marine Chem. 109:86–97.
  • Hansen K, Mouridsen S, Kristensen E. 1998. The impact of Chironomus plumosus larvae on organic matter decay and nutrient (N, P) exchange in a shallow eutrophic lake sediment following a phytoplankton sedimentation. Hydrobiologia. 364:65–74.
  • Holmer M, Storkholm P. 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biol. 46:431–451.
  • Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses A. 2013. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol. 47:2441–2456.
  • Kuwabara JS, Alpers CN, Marvin-DiPasquale MM, Topping BR, Carter JL, Stewart AR, Fend SV, Parchaso F, Moon GE, Krabbenhoft DP. 2003. Sediment–water interactions affecting dissolved-mercury distributions in Camp Far West Reservoir, California. US Geological Survey Water Resources Investigations Report 03-4140. 66 p.
  • Kuwabara JS, Berelson WM, Balistrieri LS, Woods PF, Topping BR, Steding DJ, Krabbenhoft DP. 2000. Benthic flux of metals and nutrients into the water column of lake Coeur d'Alene, Idaho. US Geological Survey Water-Resources Investigations Report 00-4132. 74 p.
  • Kuwabara JS, Marvin-DiPasquale MM, Praskins W, Byron E, Topping BR, Carter JL, Fend SV, Parchaso F, Krabbenhoft DP. 2002. Flux of dissolved forms of mercury across the sediment–water interface in Lahontan Reservoir, Nevada. US Geological Survey Water Resources Investigations Report 02-4138. 48 p.
  • Lewandowski J, Laskov C, Hupfer M. 2007. The relationship between Chironomus plumosus burrows and the spatial distribution of pore‐water phosphate, iron and ammonium in lake sediments. Freshwater Bio. 52:331–343.
  • Li Q, Jiang L, Wang D, Luo X. 2015. Sediment profile and fluxes of mercury and methyl mercury in Weihe Watershed in Henan, China. Bull Environ Contam Toxicol. 95:51–55.
  • Matthews DA, Babcock DB, Nolan JG, Prestigiacomo AR, Effler SW, Driscoll CT, Todorova SG, Kuhr KM. 2013. Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY. Environ Res. 125:52–60.
  • Mitchell CP, Gilmour CC. 2008. Methylmercury production in a Chesapeake Bay salt marsh. J Geophy Res. 113:G00C04. doi:10.1029/2008JG000765
  • Muresan B, Cossa D, Jézéquel D, Prévot F, Kerbellec S. 2007. The biogeochemistry of mercury at the sediment–water interface in the Thau Lagoon. 1. Partition and speciation. Estuar Coast Shelf Sci. 72:472–484.
  • Nogaro G, Hammerschmidt CR. 2013. Influence of benthic macrofauna on microbial production of methylmercury in sediments on the New England continental shelf. Hydrobiologia. 701:289–299.
  • Pelegrí SP, Blackburn TH. 1996. Nitrogen cycling in lake sediments bioturbated by Chironomus plumosus larvae, under different degrees of oxygenation. Hydrobiologia. 325:231–238.
  • Perron T, Chételat J, Gunn J, Beisner BE, Amyot M. 2014. Effects of experimental thermocline and oxycline deepening on methylmercury bioaccumulation in a Canadian Shield lake. Environ Sci Technol. 48:2626–2634.
  • Point D, Montperrus M, Tessier E, Amouroux D, Donard OFX, Chauvaud L, Thouzeau G, Jean F, Amice E, Grall J, et al. 2007. Biological control of trace metal and organometal benthicfluxes in a eutrophic lagoon (Thau Lagoon), Mediterranean Sea, France. Estuar Coast Shelf Sci. 72:457–471.
  • Rolfhus KR, Sakamoto HE, Cleckner LB, Stoor RW, Babiarz CL, Back RC, Manolopoulos H, Hurley JP. 2003. Distribution and fluxes of total and methylmercury in Lake Superior. Environ Sci Technol. 37:865–872.
  • Roskosch A, Hette N, Hupfer M, Lewandowski J. 2012. Alteration of Chironomus plumosus ventilation activity and bioirrigation-mediated benthic fluxes by changes in temperature, oxygen concentration, and seasonal variations. Freshwater Sci. 31:269–281.
  • Selin NE. 2009. Global biogeochemical cycling of mercury: a review. Ann Rev Environ Resour. 34:43–63.
  • Sellers P, Kelly CA, Rudd JW. 2001. Fluxes of methylmercury to the water column of a drainage lake: the relative importance of internal and external sources. Limnol Oceanog. 46:623–631.
  • Soltero RA, Wainwright ML, Sexton LM, Humphreys LM, Buchanan JP, Seigmund BL, Anderson DE, Oppenheimer JO, Morency DA. 1991. Water quality assessment of Deer Lake, Washington. Cheney (WA): Eastern Washington University, Biology Department. 415 p.
  • Svensson JM. 1997. Influence of Chironomus plumosus larvae on ammonia flux and denitrification (measured by the acetylene blockage- and the isotope pairing-technique) in eutrophic lake sediment. Hydrobiologia. 346:157–168.
  • [USEPA] United States Environmental Protection Agency. 1996. Method 1669: Sampling ambient water for trace metals at EPA water quality criteria levels. Washington (DC): EPA-821 R-96-008.
  • [USEPA] United States Environmental Protection Agency. 2001. Method 1630: Methylmercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. Washington (DC): EPA-821 R-01-020.
  • [USEPA] United States Environmental Protection Agency. 2002. Method 1631, revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. Washington (DC): EPA-821 R-02-019.
  • Wang SF, Xing DH, Jia YF, Biao L, Wang KL. 2012. The distribution of total mercury and methyl mercury in a shallow hypereutrophic lake (Lake Taihu) in two seasons. Appl Geochem. 27:343–351.
  • [WSDOE] Washington State Department of Ecology. 2003. Mercury in edible fish tissue and sediments from selected lakes and rivers of Washington State. Olympia (WA): Publication No. 03-03-026. 104 p.
  • Watras CJ. 2009. Mercury pollution in remote freshwater lakes. In: Likens G, editor. Encyclopedia of inland waters. New York: Elsevier. p. 100–109.
  • Watras CJ, Morrison KA, Back, RC. 1996. Mass balance studies of mercury and methyl mercury in small temperate/boreal lakes of the northern hemisphere. In: Global and regional mercury cycles: Sources, fluxes and mass balances. Netherlands: Springer. p. 329–358.
  • Yu RQ, Flanders JR, Mack EE, Turner R, Mirza MB, Barkay T. 2012. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environ Sci Technol. 46:2684–2691.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.